Starfish: An Efficient P&R Co-Optimization Engine with
A*-based Partial Rerouting

Fangzhou Wang, Lixin Liu, Jingsong Chen, Jinwei Liu, Xinshi Zang, Martin D.F. Wong
Department of Computer Science and Engineering, The Chinese University of Hong Kong
{fzwang, Ixliu, jschen, jwliu, xszang} @cse.cuhk.edu.hk, mdfwong@cuhk.edu.hk

Abstract—Placement and routing (P&R) are two important stages in
the physical design flow. After circuit components are assigned locations
by a placer, routing will take place to make the connections. Defined as
two separate problems, placement and routing aim to optimize different
objectives. For instance, placement usually focuses on optimizing the
half-perimeter wire length (HPWL) and estimated congestion while
routing will try to minimize the routed wire length and the number of
overflows. The misalignment between the objectives will inevitably lead to
a significant degradation in solution quality. Therefore, in this paper, we
present Starfish, an efficient P&R co-optimization engine that bridges the
gap between placement and routing. To incrementally optimize the routed
wire length, Starfish conducts cell movements and reconnects broken nets
by A*-based partial rerouting. Experimental results on the ICCAD 2020
contest benchmark suites [1] show that our co-optimizer outperforms all
the contestants with better solution quality and much shorter runtime.

I. INTRODUCTION

To solve the complex physical design problem, conventional phys-
ical design flow is divided into several stages, such as floorplanning,
placement, clock tree synthesis, routing, etc. Among these, placement
and routing are the most critical and intricate parts, which will
affect the circuit’s power, performance, and area (PPA) significantly.
However, the difficulty in optimizing placement towards some routing
metrics while routing has not yet been done, can incur a significant
degradation in solution quality. Besides, with the rapid growth of
the number of transistors, physical design at nano scale becomes
much more complicated and the adverse effect of separating the two
processes is magnified.

To bridge the gap between placement and routing, academic global
placers [2]-[5] developed in recent years not only focus on optimizing
the half-perimeter wire length (HPWL), but will also invoke a global
router to obtain a congestion map to alleviate congestion. In order to
further optimize the global placement solution in terms of routability,
several post-processing approaches were proposed. GRPlacer [6] ex-
plores a weighted optimal region for each cell and formulates a multi-
cell placement problem as a bipartite graph matching problem. The
work [7] approximates the routing solution by rectilinear minimum
spanning tree (RMST) and minimizes the corresponding congestion-
driven routing cost.

However, both [6] and [7] mainly focus on optimizing circuit
placement without a routing solution, the performance gap between
placement and routing still fails to be mitigated directly. Different
from [6] and [7], IPR [8] explicitly maintains a global routing solution
generated by FastRoute [9]. IPR will evaluate the score of every
possible destination to determine the next step movement of each
cell in order to relieve congestion and reduce wire length. However,
as each round of evaluation requires rerouting all the nets associated

The work described in this paper was partially supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China (Project No. CUHK 14209320).

978-1-6654-4507-8/21/$31.00 ©2021 IEEE

with the moved cell, IPR is rather time-consuming and is hard to
deploy in practice.

With the everlasting demand for circuits of better performance,
it is crucial to leverage the power of routing with cell movement
in physical design to co-optimize placement and routing in a more
unified and effective way.

To this end, we present Starfish!, a P&R co-optimization engine
that minimizes the actual global routing wire length by cell movement
and net rerouting. Meanwhile, all hard constraints under the routing
with cell movement context are strictly followed (e.g., connectivity,
min-routing-layer, overflow-free, etc). Our contributions can be sum-
marized as follows.

o We propose an efficient multi-threaded P&R co-optimization
engine, which integrates several novel techniques to effectively
minimize the total routed wire length based on an initial P&R
solution.

o Our engine integrates a rectilinear Steiner minimum tree
(RSMT)-guided maze routing technique for both wire length
and runtime reduction.

o We propose a lookup table-based approach for accurate wire
length estimation, which takes several hard constraints (e.g.,
min-routing-layer, preferred routing direction) into account.
With accurate point-to-point wire length estimation, a cell move-
ment gain estimation scheme, which utilizes the existing net
routing topologies, is proposed to pick good candidate destina-
tions for cells. We further accelerate the estimation scheme by
a median box-based pruning technique.

o In alignment with the proposed gain estimation scheme, we
design a multi-source single-target A*-based partial rerouting
algorithm to quickly connect a moved cell back to the trunk of
a previous routing topology.

o Experimental results on the ICCAD 2020 contest benchmarks
suite [1] show that our proposed P&R co-optimization engine
outperforms all the contestants. In particular, compared with the
champion of the contest, Starfish can achieve 0.9% better scores’
with 87% less runtime on average.

II. PRELIMINARIES

In the routing with cell movement problem [1], a bounded number
of cells can be relocated to improve the original placement and
routing solution such that the routed wire length can be further
minimized without causing routing overflows. Figure 1 shows an

IStarfish, or sea stars, are well recognized for their marvelous ability to
regrow arms. Inspired by the similarity between arm regeneration and the
process of reconnecting a moved cell back to the existing routing segments,
we name the proposed engine Starfish.

’In the contest setting, this can be considered as a significant gap, given
that the differences in score between the first place and the other two top-3
participants are only 0.8% and 1.0% respectively on average.

OO O O O
0O [Cell
Moved Cell
? 0 — Net 1
Net 2
o Net 3
O O O

(a) Before Routing with Cell Movement (b) After Routing with Cell Movement

Fig. 1: Illustration for routing with cell movement. Both (a) and (b)
have the same HPWL, but the routed wire length in (b) is shorter.

example of routing with cell movement based on an existing placed-
and-routed circuit. After cell relocation and net rerouting (shown in
Figure 1(b)), a better P&R solution is achieved with shorter routed
wire length. It is worth noting that, since this problem is not aimed
at generating a totally different placement solution, the total number
of cells that can be moved is limited (e.g. 30% of the total number
of cells). In the following discussion, we denote C' as the set of cells
and N as the set of nets.

A. Coordinate Plane and Grid Graph

Coordinate plane and grid graph are two basic concepts in this
problem, which represent the placement region and the global routing
region respectively.

1) 2D Coordinate Plane: Given the number of rows Row and
the number of columns Col, the coordinate plane P C Z? contains
|P| = Row x Col coordinates and serves as the placement region.
Each cell ¢; € C locates at a specific 2D coordinates p; € P, and
each 2D coordinates p € P can usually accommodate more than one
cell as long as the constraints described in Section II-D are satisfied.

2) 3D Grid Graph: Similar to traditional 3D global routers [10]—
[12], a 3D grid graph G(V, E) is constructed to represent the 3D
routing region. In this problem, V' denotes the set of all global routing
cells (Geells) in the 3D routing region. The size of V C Z? is given
by |V| = Row x Col x L, where L is the number of metal layers.
Meanwhile, E is the set of edges showing the connectivity between
Geells. There are two types of edges between Gceells. One is the wire
edge, which represents the intra-layer connection between two Gceells
lying on the same layer and being adjacent in the preferred routing
direction of that layer. The other one is the via edge, which represents
the inter-layer connection between two adjacent Geells locating at the
same 2D coordinate.

B. Net Model

In the routing with cell movement context, each net possesses its
own sets of routing segments to connect the pins, and the routed wire
length of a net is computed as the total number of Gceells traversed
by its routing segments. In addition, the routing segments of each net
must satisfy a min-routing-layer (MRL) constraint, which specifies
a minimum 2D routing layer. The horizontal and vertical routing
segments of a net n € N must occur on or above its min-routing-
layer mri(n).

C. Overflow Gcell Definition

To define an overflow Geell, we first introduce Gceell capacity. The
capacity of a Geell v € V is defined as the difference between its
supply and demand, denoted as cap(v) = supply(v) — demand(v).
The term supply(v) is a given value that measures the available
resources for cell placement and net routing, and demand(v) is the
summation of cell blockage demand, cell extra demand and routing

(1) | Initial Solution Refinement and Rerouting |
]

| Batch Generation and Gain Estimation |

|

@ | Gain Threshold T = K(K > 0) |

|
v

For each batch
Mini-batch Generation

| Multi-threaded Cell Movement and Partial Rerouting |

| Cell Movement Gain Estimation Update |

)
| Selective Net Rerouting |

Cell Movement
Convergence?

©) |

Post-processing |

Fig. 2: Overall flow of Starfish. Our proposed co-optimization engine
consists of three stages: (1) pre-processing, (2) multi-threaded cell
movement, and (3) post-processing.

demand. The detailed formulation of supply(v) and demand(v) are
given in [1], including how the cell extra demand is calculated. When
the capacity of a Geell v is smaller than zero, that is, cap(v) < 0, v
is considered as an overflow Gcell.

D. Problem Formulation

Given a placed-and-routed circuit, the routing with cell movement
problem is defined to minimize the total routed wire length by cell
relocation and net rerouting. The final solution should satisfy the
following constraints.

1) Max-Cell-Movement: The total number of cells that can be
moved is limited by a constant MaxzCell M ove.

2) Min-Routing-Layer: Routing segments of each net must occur
on or above its min-routing-layer.

3) Connectivity: No open net exists.

4) Preferred Routing Direction: The intra-layer routing segments
must follow the preferred routing direction.

5) Overflow-Free: No overflow Geell exists.

Satisfying the aforementioned constraints, the score of the final
output solution is defined as:

Score = TW Linput — TW Loutput, (1

where T'W Lippur and T'W Loyiput denote the total wire length in
the given input solution and the final output solution respectively.

III. PROPOSED ALGORITHMS
A. Overview

As Figure 2 shows, our proposed algorithm can be divided into
three major parts, (1) pre-processing, (2) iterative multi-threaded cell
movement, and (3) post-processing.

In the pre-processing stage, we will first read in a given overflow-
free routing solution. As cycles and unnecessary wire segments may
exist in this initial solution, a refinement step will first be conducted
to generate a clean routing topology for each net.

After refining the initial solution, a congestion-driven rip-up and
reroute (RRR) algorithm will be applied to greedily improve the
routing solution, thus providing a better initial solution for the coming
multi-threaded cell movement.

Before cell movements are performed, movable cells will first
be partitioned into several batches, where cells in the same batch
are independent from each other. Two cells are independent if they
are not connected by any net. We then utilize a lookup table-based
estimation scheme to calculate the cell movement gains and locate
good candidate destinations for each movable cell.

In the iterative multi-threaded cell movement stage, cells will be
moved and reconnected by an A*-based partial rerouting algorithm
that aligns with the proposed estimation scheme. In order to conduct
cell movements in parallel, cells in an independent batch will be
further partitioned into several mini-batches in such a way that cells
in the same mini-batch do not overlap in terms of placement and
routing region.

After handling an independent batch of cells, movement gains
will be updated for cells that have been successfully moved or have
connections with some moved cells. Note that this gain update step
can be delayed until after an independent batch of cell movements
is finished and can be readily parallelized, since the relocation of
one cell will not affect the cell movement gains of other cells that
are independent with it. A net rerouting scheme will then be applied
to further optimize nets that have been partially rerouted during the
previous cell movement step.

One may wonder about the cell ordering, which can have a
significant impact on the solution quality. Indeed, with the two-
level batching strategy, cells are not explicitly ordered in our engine.
Instead, we introduce a gain threshold 7 to maintain a cell ordering
implicitly. A cell movement will be committed only when its wire
length gain is at least 7. By starting with a relatively large threshold
and gradually decreasing its value, cells with higher potential of wire
length reduction can be prioritized.

In the post-processing stage, steps are taken to further reduce the
routed wire length while ensuring that the output solution is legal.
As the cell ordering for optimal P&R co-optimization is non-trivial,
to achieve better results, we allow more than MaxCellMove cells
to be moved in the cell movement stage, and design a scheme to
carefully move cells that bring fewer gains back to their original
locations. Finally, several rounds of wire length-driven rerouting will
be performed to explore potential gains based on the final layout.

In Section III-B, we will discuss an RSMT-guided maze routing
approach, which is adopted in all net rerouting stages except the
partial rerouting after cell movement. In Section III-C, details about
the proposed cell movement and partial rerouting scheme will be
covered. After that, we introduce the post-processing techniques in
Section III-D.

B. RSMT-guided Maze Routing

In the proposed flow, we utilize maze routing to improve the exist-
ing routing solution under a fixed cell placement. The routing function
will be called many times throughout the entire co-optimization
process. For instance in Figure 2, this RSMT-guided maze routing
will be invoked in the initial rerouting of the pre-processing stage,
the selective net rerouting of the multi-threaded cell movement stage,
and the wire length-driven rerouting of the post-processing stage.
Therefore, an efficient method with good quality is essential.

Existing global routers like MGR [11] and CUGR [12] utilize
multi-level routing to speed up the routing process, where a set of
route guides will be generated to help pruning the routing solution

m|
5] ‘ =
T
(a)
L
O ()
O
=]
]
(b) (©)
OPin e Steiner Point — Steiner Tree Topology Routed Wire [| Guide

Fig. 3: Illustration for RSMT-guided maze routing. (a) An RSMT
is generated according to the 2D layout by FLUTE [13]. (b) Route
guides are generated according to the Steiner tree topology. (c) Fine-
grained maze routing is conducted in the pruned solution space.

space. With a similar idea in mind, we adopt an RSMT-guided maze
routing approach, which is both faster and can achieve shorter wire
length compared with a naive congestion-driven maze routing where
routing is simply restricted in the net bounding box.

1) Routing Region Generation: The guides will be generated
based on a coarsen-grained grid graph. In our implementation, each
block of 5 x 5 Geells forms a coarsened grid. As Figure 3(a) shows,
an RSMT topology will first be generated by FLUTE [13] in an
instant according the 2D coordinates of the pins. For an edge whose
two end-points are not on the same row or column, the RSMT does
not tell which L-shape to use, and we can either go horizontally or
vertically first. Therefore, the entire rectangular region that covers the
two points will be considered as part of the routing region to provide
more flexibility.

In this way, a smaller routing region like Figure 3(b) will be
generated. It is worth noting that for the coming fine-grained maze
routing, the region will be expanded vertically to form a 3D subgraph,
where the routing layer range will be initially determined by the min-
routing-layer and the pin locations of the net. Based on that, we will
expand the layer range both upwards and downwards to increase the
routing flexibility. As shown in Figure 3(c), with the help of route
guides, a fine-grained routing solution with short wire length can be
efficiently retrieved in a much smaller solution space.

2) Cost Scheme: In the fine-grained maze routing, we assign a
cost to each Geell, taking into account congestion. The cost function
f(v) for a Geell v is described by,

f() =1+ con(v) + op(v), (2a)
o

con(v) = T capleap(0))’ (2b)

op(v) = inf x 1(cap(v) < 0), (20)

where 1 € {0,1} is an indicator function. We can see that f(v)
consists of three parts: the wire length cost (which is always one),
the congestion cost, and the overflow penalty. The congestion cost
con(v) is designed to (1) increase rapidly when the capacity is close
to zero and (2) incur little cost when the routing resource is abundant.
Here o is a constant corresponding to the weight of the congestion
cost. Lastly, if cap(v) < 0, that is, overflow has occurred or adding
just one more demand will cause overflow, a large penalty will be
invoked by op(v).

3) Greedy Rip-up and Reroute: Based on the RSMT route guides
and the cost scheme, a greedy rip-up and reroute (RRR) is imple-
mented to improve an existing routing solution in terms of congestion
and wire length. The greedy RRR process is described as follows.
Nets will first be sorted by the HPWL in ascending order. To

guarantee an overflow-free solution, nets will be rerouted one by one.
The new routing solution of a net will be accepted if no overflow
occurs and the corresponding wire length is shorter than the old one.

C. Cell Movement with A*-based Partial Rerouting

In this section, a multi-threaded cell movement scheme is proposed.
In this process, we need to identify the cells to be moved and
their potential destinations. To achieve this, we devised a lookup
table-based approach to estimate quickly wire length gain after cell
relocation utilizing the existing net routing segments, and an A*-
based partial rerouting algorithm for fast routing tree reconstruction.

1) Lookup Table-based Wire Length Estimation: We first explain
how routed wire length can be accurately measured by a lookup
table-based approach under the min-routing-layer and preferred rout-
ing direction constraints. For two points p1 = (r1,c¢1,01) and
p2 = (ra,c2,l2), without any constraint, as shown in Figure 4(a),
the routing distance between them can roughly be estimated as the
summation of |r1 — ra|, |c1 — ¢z, and |l; — l2].

However, when the two routing layer-related constraints are in-
volved, the calculation becomes less straightforward. Figure 4(b)
shows one shortest routing path to connect a two-pin net when
mrl = 2. Starting from A, the route needs to reach M2 first because
of the min-routing-layer constraint. Vertical in-layer routing will then
be conducted. Due to the existence of preferred routing directions,
there must be an additional pair of up-and-down movements in order
to conduct horizontal routing on M3. Calculation of such minimum
routing distance may look complicated and can be affected by various
factors.

Despite that, the routing distance can still be estimated efficiently
with the help of a pre-calculated lookup table. We denote the
minimum routing distance (MRD) needed to connect two points,
p1 and p2, with a minimum routing layer mrl by a function
mrd(p1, p2, mrl). In Figure 4(b), we can see that when calculating
mrd(pi1,p2, mrl), |Ar| = |r1 — r2| and |Ac| = |e1 — c2| always
contribute to the total routing distance. It is the capturing of via usage
under different situations that makes the routing distance estimation
complicated. An accurate estimation of via usage can be obtained
with the following information: (1) whether the two points are on
the same row, (2) whether the two points are on the same column,
(3) the layer of p1, (4) the layer of p2, (5) the mrl value, and (6) the
preferred routing direction for each layer in the current design. A via-
usage lookup table viut € N2*2XEXLXL cap then be pre-calculated
in O(L?) time by enumerating all the possibilities. Since L can be at
most 16 in all the given cases, the space and preprocessing overhead
is negligible.

With the above definitions, the formulation of mrd is as follows,

mrd(p1,p2, mrl) = |Ar| + |Ac|
+ viut(zero(Ar), zero(Ac), l1,l2, mrl), (3a)

zero(zx) = {1 iz =0, (3b)

0 ,ifxz#0.
Back to the case in Figure 4(b), the mrd value can be quickly
computed as |1 — 2| + |1 — 4| + vlut(0,0,1,2,2) =1+ 3 + 3.

2) Cell Movement Gain Estimation : With accurate point-to-point
wire length estimation, we further discuss the cell movement gain
estimation that utilizes the existing net routing topologies, which will
be critical for selecting a set of good candidate destinations for the
placement optimization purpose.

For a multi-pin net n, let C,, be the set of cells connected by n
and G(n) be the set of visited Geells in the current routing solution.

M3 (H)
2 ;) s
2 2
(I,\,/,[rzlivz)) Al=1 ‘/\}4‘ =1
MI1@E) A Ar=1 /1A
p1 P1
(a,A.\i.:Di 5 (b)MRD =7

Fig. 4: Illustration for the minimum routing distance (MRD) cal-
culation. (a) Without any constraints, MRD can be estimated as
the summation of |Ar| + |Ac| + |Al|l. (b) With the preferred
routing direction and mrl, |Ar| + |Ac| can be one invariant in the
complicated MRD calculation.

B~ |
(E]
(o]
O Cell Moved Cell Moving Direction === Net1 == Net2
— Remaining Segment —-~Removed Segment ----Rerouted Segment

Fig. 5: Illustration for the remaining segments and the removed
segments. Note that the remaining segments of Net 1 and Net 2
both form a single connected component.

Under the circumstance that one of its cells ¢ € C, is moved,
we denote the remaining segments (RS) as rs(n,i), which is the
smallest subset of G(n) such that all the cells in C, \ ¢ are still
connected without violating any routing constraints. Figure 5 gives
an illustration for the remaining segments when cell C' is moved.
Further, we denote the removed routing segments due to the cell
movement as rm(n,:) = G(n) \ rs(n,d). In this way, the rest of
the net rs(n,) can still form a single connected component, and
the routing tree can be easily reconstructed by connecting the moved
cell to any one of the Geells in rs(n,). Note that both rs(n,¢) and
rm(n,i) can be quickly retrieved by a search on the routing tree,
starting from the Gceell containing the pin of the moved cell 3.

Next we (1) conduct the cell movement gain estimation and (2)
select candidate destinations for each cell. Consider a single cell i,
let N; be the set of nets associated with cell 7. As Algorithm 1
shows, for gain estimation, we first get a rectangular candidate region
(denoted as candiRegion in line 1) where the wire length gains will
be calculated for each location (r,c) in candiRegion and stored in
a gain map denoted as gainMap. The gain map will be initialized
to zero at the beginning (line 2) and updated from time to time. We
will later discuss how this candidate region can be obtained.

As line 3 shows, we will iterate through all the nets in N;
and accumulate the cell movement gains for each location (r,c) in
gainMap (line 25). When handling a net n, we first find the pin in
n that belongs to cell ¢ to get the layer information of the point to
be connected (line 4-5). With the remaining segments rs(n,) and
removed segments rm(n, i) retrieved from the routing tree of n, the
wire length reduction wl,.,, due to the removal of cell ¢ will simply
be the size of rm(n,i) (line 6-8). In line 9-11, the boolean variable
sameLoc indicates if all the Geells in the remaining segments have
the same 2D coordinate, which can make a significant difference in

Algorithm 1 Cell Movement Gain Estimation

Input: Cell 4, Set of nets NV, associated with cell <.
Output: A map gainMap recording the estimated gains when cell 4 is
moved to different locations.
1: candiRegion <+ getCandidateRegion(i);
2: Initialize each entry of gainMap to 0;
3. foreach n € N; do
4. Let pin, € n be a pin of cell 4;
5: 1 < getLayer(ping);
6: rs(n,i) < getRemainingSegments(n,i);
7 rm(n, i) < getRemovedSegments(n,i);
8

Wl [rm(n,i)l; > Get removed wire length.

9: sameLoc < true;
10: if rs(n,) contains Geells with different 2D coordinates then
11: sameLoc < false; > For higher estimation accuracy.

12: foreach dest = (r,c) € candiRegion do

13: Let p = (r,¢,1);

14: COStmin < 00}

15: foreach Geell p’ = (v/,c/,l') € rs(n,i) do

16: if r =7’ and c = ¢’ and sameLoc = false then
17: if Il < mri(n) and I’ < mri(n) then

18: costeyr + mazx(l’ —1,0);

19: €OStmin < Min(costmin, cOSteur);

20: else

21: €OStmin + min(costmin, mrd(p,p’, mrl(n));
22: else

23: coStmin < min(costmin, mrd(p,p’, mrl(n));
24 Wlgain ¢ Wlrm — costmin;

25: gainMaplr][c] < gainMap[r][c] + wlgain;

26: return

Algorithm 2 Candidate Destination Selection

Input: Cell ¢, Gain estimation map gainMap for cell 7.
Output: Candidate destinations with movement gains for cell 7.
1: candiDest < {}; > A collection of (gain, destination) pairs.
2: candiRegion < getCandidateRegion(i);

3: foreach dest = (r,c) € candiRegion do

4: if gainMap[r][c] > 0 then

5: candiDest.append(gain, dest);

6: Sort candiDest by gain in descending order;

7: return

the later estimation process.

In line 12-24, we calculate the wire length gain of net n when
the cell is moved to different positions in candiRegion. Consider a
possible destination (r,c), the corresponding point to be connected
back to rs(n,) will be p = (r, ¢, 1) (line 13). We then iterate through
all the Geells p’ € rs(n,) to find the minimum wire length needed
for the reconnection (line 15-23). In most cases, the minimum value
can be easily updated with the mrd function, which is based on a
lookup table (line 23). However, some special case handling is needed
for higher estimation accuracy (line 16-19) as explained below.

An example is shown in Figure 6. In this example, we consider
moving cell A to Geell p and try to estimate the minimum routing
distance for the reconnection. This is a case that the destination
position overlaps with part of the remaining segments in 2D. In the
presence of min-routing-layer M3, if we simply measure the mrd
between p and each g, in the remaining segments, mrd(p, g1,3) = 2
will be considered as the minimum wire length needed to connect
pin A with the remaining parts. However, the actual additional wire
length needed is 1 only, which corresponds to the usage of Gceell p.
The over-estimation by mrd(p, q1,3) is resulted from the ignorance

minmrd(p, g, 3) = mrd(p,q,,3) = 2

M3
(mrl=3) qz q3
M2 (8]
91 44
Ml (]
p as

— Remaining Segments

Fig. 6: Ilustration for the special case handling for accuracy improve-
ment under the presence of min-routing-layer.

of the fact that Geell g2 has already been included in the remaining
segments when we are considering the (p,q1) pair. The checkings
and steps in line 16-19 can help to improve the estimation accuracy
under similar situations, which is essential as the min-routing-layer
can be as high as ten in some benchmarks.

After cell movement gain estimation and updates to gain map, we
can conduct candidate destination selection as shown in Algorithm 2.
For each position in the candidate region, if the estimated wire length
gain is greater than zero, it will be added to the candidate destination
collection candiDest along with its gain (line 3-6). Sorting will be
conducted based on the gains such that positions with higher potential
of reducing wire length will be tried first.

3) Candidates Pruning by Median Box: At the beginning of this
cell movement gain estimation stage, we will locate the candidate
region. For efficiency, it is not good to take the whole R x C' layout
as the candidate region. Consider current cell 4, let N; be the set
of nets connecting to it, and C; be the set of cells connected to 1.
An intuitive idea will be to consider the smallest bounding box that
covers all the cells in C; and cell 4 itself as the region, which will
be referred to as the cell bounding box. However, with this approach,
the bounding box can still be large when C; spans a wide area, which
dramatically slows down the estimation process.

Therefore, we introduce a median box-based approach to gener-
ate candidate region, which effectively prunes the total number of
candidates without affecting the solution quality. In the proposed
approach, an expanded optimal region will be taken as a candidate
region, which is defined based on a concept called optimal region
(OR). We define optimal region for cell ¢ (OR;) as the set of
locations that minimize } -, . hpwl(n) when cell is being moved.
Here hpwl(n) refers to the half-perimeter wire length of net n. As
mentioned in [14], OR; can be computed based on the median of
the bounding box boundaries of the nets in /V;. For a net n € NV;, we
denote the lower-left and upper-right corner of its bounding box with
cell 7 removed as (r1(n), ci1(n)) and (r2(n), c2(n)) respectively.
Let Rs = [ri(n1),r2(n1),m1(n2), r2(n2), ..., 1 (nyn;)), m2(n ;)]
be an array of all these row indices. Similarly, we have an array C's
storing the column indices. OR; will then be the rectangular region
with (7', ¢%P") as its lower-left corner and (757", c3P") as its upper-
right corner, where 79", 3" are the medians of Rs and c**, c3P"
are the medians of C's. Note that both Rs and C's will have an even

number of elements. It is possible that 77" equals 757" or ¢?* equals

co? ‘. In that case, OR; will be a single line or even a single point.
Figure 7(a) shows the optimal region for a single cell A in a case that
there are only two nets {A, B, E}, {A, C, D} containing A. With cell
A excluded, the optimal region (green region) can be calculated using
the bounding boxes of the two nets. However, when all the positions

in OR; are congested, moving the cell to a location nearby may still

(a) Optimal Region (b) Expanded Optimal Region

Fig. 7: Illustration of the expanded optimal region for cell A, which
will be taken as the candidate region.

lead to a considerable amount of wire length reduction. As shown
in Figure 7(b), by expanding the optimal region by a margin, an
expanded optimal region is obtained and will serve as the candidate
region. In Section IV, we will show the effectiveness of this pruning
technique and explore a suitable width for the candidate margin.

4) A*-based Partial Rerouting: With a set of good cell movement
candidate destinations, routing is needed to rebuild net connection and
verify if the cell can be successfully moved to the new location, that
is, no overflow is caused and the actual wire length gain through this
relocation is large enough. In alignment with the proposed estimation
scheme, and to quickly connect a cell back to the remaining segments
of its associated nets, a multi-source single-target A*-based partial
rerouting algorithm is proposed (Algorithm 3). Consider a net n,
given its remaining segments 7s, and a pin to be reconnected p =
(r,c,0), we try to find a least-cost path from rs to pin p. In the
algorithm, we assume that p ¢ rs, or else the remaining segments can
be directly used as the new routing solution. As two critical elements
in an A* search, the routing cost and the heuristic cost of a Gceell
v are modeled by f(v) from Equation (2) and mrd(v, p, mri(n))
from Equation (3a) respectively.

In the proposed A* search, we maintain a map cameFrom for
routing path traceback, a map rScore for the minimum routing cost
from any point to rs, and a map fScore for the heuristic score
based on function f and mrd (line 1-4). We treat all the Gcells
in s as sources, updating the corresponding entries in rScore and
fScore (line 5-8), and conduct a typical A* search (line 9-22). Once
the pin p is found, we construct the routing solution following the
cameFrom map (line 11-13). Routing failure will be reported if the
pin cannot be reached due to the preferred routing direction or min-
routing-layer constraints (line 23-24). Since the given placement has
been optimized globally, cells will not be moved far away from its
original location in most of the cases. Therefore, the proposed path
searching algorithm can be highly efficient in this routing with cell
movement context.

With the proposed A*-based partial rerouting algorithm, the overall
flow of a cell movement is described in Algorithm 4. Before we
move a cell ¢, the total wire length of the previous routing solution
will be recorded first (line 1). We then rip up the cell from the
current placement (line 2). To reclaim part of the resource used
by the previous routing solution and prepare for the future partial
rerouting, the remaining and removed segments will be retrieved for
each net associated with cell 7 (line 3-6). After that, we will consider
every position dest in the pre-calculated candidate destinations
candiDest;, starting from the one with the largest gain (line 8-18).
After partial rerouting, the actual gain in wire length gain,,; will
be calculated as the total wire length change before and after the
cell movement (line 12-14). A cell movement will be accepted when
there is no overflow and gain.,; is greater than or equal to the gain
threshold (line 15-18). If the cell movement fails for all candidate

Algorithm 3 A*-based Partial Rerouting

Input: Net to be partially rerouted n, Remaining segments rs, To be
connected pin p = (r, ¢,).
Qutput: A new routing solution for net n.

1: openSet « {}; > A set of discovered nodes to be expanded.
2: cameFrom < empty map; > For routing path tracing.
3: rScore < map with all co; > Minimum routing cost from sources.
4: fScore <— map with all co; > Heuristic score based on f and mrd.
5: foreach Geell p’ € rs do

6: openSet.add(p'); > Treat all Geells in rs as sources.
7: rScore(p’) « 0;
8: fScore(p’) «+ mrd(p’, p, mrl(n)); > mrd for estimation.
9: while openSet is not empty do

10: Let u € openSet be the node with the lowest fScore value;

11: if u=p then > The goal is reached.

12: Construct the routing solution with cameFrom,;

13: return

14: openSet.remove(u);

15: foreach neighbor v of u do

16: rScorenew < rScore(u) + f(v); > f(v): cost for a Geell.
17: if rScorenew < rScore(v) then

18: cameFrom(v) < u;

19: rScore(v) < rScorenew; > Update the minimum cost.

20: fScore(v) < rScore(v) + mrd(v,p, mri(n));

21: if v ¢ openSet then

22: openSet.add(v);

23: Report routing failure;

24: return

Algorithm 4 Single Cell Movement

Input: Cell 7, Set of nets IN; associated with cell i, Sorted candidate
destinations with movement gains candiDest;, Gain threshold 7.
Output: New placement for cell ¢ and update routing solutions.

I: wlyg < ZnENi wl(n); > Original total wire length.
2: Rip up cell ¢ from current placement result;
3: foreach net n € N; do
4 rs(n,i) < getRemainingSegments(n,i);
5: rm(n,i) < getRemovedSegments(n,i);
6: Rip up the routing resource usage by rm(n,i);
7: moveSuccess < false;
8: foreach (gain,dest) € candiDest; do
9: if gain < 7 then
10: Break out of the loop;
11: Move cell i to dest;
12: Perform partial rerouting for all n € N;, store the results in N/;
13: Wlnew — Zn/eN(wl(n');
14: GaiNqy — Wlog = Wlnew;
15: if gain,, > 7 and no overflow occurs then
16: Accept the cell movement and update routing solution;
17: moveSuccess < true;
18: Break;
19: if moveSuccess = false then
20: Put cell ¢ back to its previous location;
21: Recover old routing solution for all n € N;;
22: return

destinations, the cell will be put back to its original position with
related routing solution restored (line 19-21). Note that in line 9-10,
a pruning based on the estimated gain is conducted to speed up the
process without affecting the solution quality. As the cell movement
estimation scheme does not consider routing congestion, gain is an
upper bound of the actual wire length gain gain.;. Therefore, if
gain < T, the cell movement will be rejected immediately. Since the

TABLE I: Experimental Results on the ICCAD 2020 Benchmark

Benchmarks | Ist Place Team | 2nd Place Team | 3rd Place Team | Ours (Starfish)

Case ID TWLigpue | Score RT (s) | Score RT (s) | Score RT (s) | Score RT (s) Ruife
case3 32600 11425 34 11428 4 11557 111 11610 2 0.356
cased 4680681 2046811 2221 2048105 804 2037598 3441 2064790 260 0.441
case5 1763627 695219 903 685173 183 682963 1213 699626 111 0.397
case6 7188481 2721274 3171 2687926 2217 2656320 3511 2737028 684 0.381

case3B 29748 11237 31 11073 4 11289 206 11327 1 0.381

case4B 4886698 2182574 2299 2180172 786 2167411 3371 2200820 284 0.450

case5B 1721530 664347 886 654797 237 654183 1226 668351 103 0.388

case6B 7340802 2748097 3406 2722222 2801 2668052 3514 2785061 932 0.379

Avg. ratio - ‘ 1.000 1.000 ‘ 0.992 0.368 ‘ 0.990 2.224 ‘ 1.009 0.133 0.397

* The score and runtime statistics of the top-3 winners are provided by the contest organizer with Intel Xeon E7-4820 CPU (2.00 GHz, 8 cores) and 128
GB memory. TWL;;,, denotes the total wire length in the given input solution. RT is short for runtime. Ryifr = Score/TWLippy. The average ratio for
score is obtained by taking the average of normalized scores against the 1st place, same for the runtime.

candiDest; is sorted by gain, there is no need to consider the rest
of the destinations if the current candidate already has an estimated
gain less than 7.

For an independent batch of cells, the movement step can be
parallelized by dividing the cells into several mini-batches in such a
way that cells in the same batch do not overlap in terms of placement
and routing region.

5) Selective Net Rerouting: In Figure 5, we can see that in the
original routing solution of Net 2, a C-shaped detour was made to
connect cell C. After the relocation of cell C, this unnecessary detour,
still exists in the new routing solution as it was treated as parts of
the remaining segments. To handle such cases, as shown in Figure 2,
we will conduct one round of selective net rerouting, which only
selects the nets associated with the successfully moved cells in the
previous round of cell movement, and performs greedy RRR (end of
Section III-B) for them. In this way, new routing topologies can be
generated if the existing ones can be further improved.

D. Post-processing with Greedy Cell Put-back

After the multi-threaded cell movement process, several post-
processing techniques are applied to further reduce the total routed
wire length while ensuring a legal output solution. In the proposed
flow, we allow more than MaxCell M ove cells to be moved. When
the total number of moved cells exceeds MaxzCellMove, a greedy
cell put-back process will be applied to carefully move cells that bring
fewer gains back to their original locations without causing overflow.
This is done as follows. We will start with a gain threshold (-1 in our
implementation), and try to put each moved cell back to its initial
position. Note that the gain threshold is negative because the wire
length is expected to increase in this put-back process. However, if
the wire length increases by too much, that is, the wire length gain is
smaller than the gain threshold, or overflow occurs, we will not move
a cell back to its original position to avoid degrading the solution
quality for too much.

After iterating through all the cells once, the gain threshold will
be reduced to allow more cells to move back in the next iteration.
This process will stop once the total number of moved cells is
no greater than MazCellMove. After this cell put-back process,
several rounds of wire length-driven rerouting, which is essentially
the aforementioned greedy RRR with little congestion cost, will be
performed to further reduce the total wire length.

IV. EXPERIMENTAL RESULTS

Our P&R co-optimization engine is implemented in the C++
language and all the experiments were conducted on a Linux machine

with 2.90 GHz Intel Xeon CPU and 756 GB memory. Consistent with
the contest, eight threads are used by default. We empirically test the
proposed flow on the ICCAD 2020 contest benchmark suites [1] and
compare our results with the top-3 winners. Ablation studies are also
conducted to show the effectiveness of our proposed techniques with
respect to (1) solution quality and (2) runtime.

A. Comparison with the Top-3 Winners

The benchmark consists of ten cases, including two toy cases
(casel, case2). In Table II, statistics of each cases are shown,
including the number of cells, the number of nets, the maximum
number of cells that can be moved, and the size of the layout.

TABLE II: Benchmark Statistics

Case ID | #Cells [#Nets | MCM [#Geells (Row x Col x L) |

casel 8 6 2 5x 5x3
case2 6 6 3 4x4x3
case3 2735 2644 820 27x33x7
case4 204206 | 179996 61261 277x277x12
caseS 96682 92546 29004 104x103x 16
case6 352269 | 332080 | 105680 237x236x16
case3B 2604 2563 781 29%x29x7
case4B 207347 | 183137 62204 277x277%x12
case5B 96689 92559 29006 104x103x 16
case6B 352234 | 332045 | 105670 237x236x 16

* MCM denotes the MaxCellMove.

Quantitative results are presented in Table I. Column “Score”, as
formulated in Equation (1), measures the wire length improvement
between the given input solution and the final output solution.
Column “Rg;fs”, df:ﬁned as Raifs = Tmfifff — = I;V;/VLL(;ZZJ:
denotes the total wire length reduction rate. From the table, we can
observe that our proposed co-optimizer can effectively reduce the
total routed wire length based on a given P&R solution. Compared
with the ICCAD 2020 contest winners, our co-optimizer stands
out with better scores and much shorter runtime in all the cases.
Specifically, compared with the first place, we achieves 0.9% better
scores with 87% less runtime on average. In the contest setting, this
can be considered as a significant gap, given that the differences in
score between the first place and the other two top-3 participants
are only 0.8% and 1.0% respectively on average. Moreover, results
from column “Rg; 5" shows that with the proposed routing with cell
movement scheme, our co-optimizer can achieve 39.7% total wire
length reduction on average.

cased

cased4B

= Refinement

W Initial Rerouting
W Cell Movement

B Cell Put-back
WL-driven Rerouting

caseS

caseSB

case6

case6B

0.0 0.5 1.0 1.5 2.0 25
Score 16

Fig. 8: Illustration for the wire length reduction after each stage in
our flow. For case6 and case6B, since the cell movement quota is not
used up in the end, the cell put-back does not affect the score.

= 2600

.
et —e—e—s—o, e L ysoo
e M 2
- LY

- 2400

= y /
E / o »
.
: /e
/
i/
~e= Total Score

o —=— Total Runtime
- 2000
123456789 1011121314151617 181920 21
Initial Gain Threshold

Total Runtime (<)

Fig. 9: The total score here refers to the summation of scores from
all the cases except for the two toy cases, same for the runtime. In
general, both the total score and runtime increase with a larger initial
gain threshold.

B. Effectiveness of Wire Length Reduction

To demonstrate the effectiveness of our proposed techniques for
quality improvement, in Figure 8, we show the total wire length
reduction after each stage of our flow, including the initial solution
refinement, the initial rerouting, the multi-threaded cell movement,
the greedy cell put-back, and the wire length-driven rerouting. Note
that both the refinement and the initial rerouting can effectively
reduce the total wire length. Cell movements are then performed to
co-optimize placement and routing. After cell put-back, the score will
drop since the previous cell movement stage overshot the maximum
number of cells that can be moved, and this is a stage to correct it.
However, the drop is very minimal because of the techniques applied
in the put-back process. Lastly, the total wire length is further reduced
by the wire length-driven rerouting.

In the overall flow of Starfish shown in Figure 2, a gain threshold 7
is used to maintain an implicit cell ordering. We study how the total
score (summation of scores from all benchmarks except for the two
toy cases) will change with different initialization of 7. The result is
shown in Figure 9. We can see that a larger 7 will give better result,
but a larger 7 will also lead to a longer runtime to converge. In our
implementation, we initialize 7 as 15.

C. Effectiveness of Runtime Reduction

In Section III-C, a median box-based approach is proposed for
efficient solution space pruning. In comparison with the intuitive
idea of taking the cell bounding box, which covers a cell and all its
connected cells, as the candidate region, we show the effectiveness of
our pruning technique with different levels of expanding the optimal

Score Baseline
~m=— Runtime
""" Runtime Baseline
2 3 4 5 6 7 8 9 10
Candidate Region Margin
Fig. 10: The impact of the candidate region margin on the total wire
length reduction (score) and runtime in case4. As a baseline, the cell

bounding box will be used as the candidate region.

cased
cased4B

2 4 6

8 10 12 14 16
#Threads

Fig. 11: Speed-up by multi-threading.

region (called the candidate region margin) in Figure 10, where
case4 is used for demonstration. Here, the baseline uses the cell
bounding box as the candidate region, which is supposed to be large
enough to give very good result. However, a large candidate region
will also lead to a long runtime. To reduce runtime, a median box
with an expanded margin is used in our approach. Comparing with
the baseline, our proposed approach can effectively reduce the total
runtime while achieving a very similar quality. For example, with
a margin close to 4, a result with decent quality can be obtained
with an over 40% runtime reduction. Note that the curves are similar
in other benchmarks. In our implementation, seven is chosen as the
margin for better quality and runtime trade-off.

For parallelism, multi-threading is applied in greedy RRR, cell
movement gain estimation, and cell movements. We show the
effectiveness of these multi-threading strategies in Figure 11 by
changing the number of threads and measure the corresponding
runtime improvement. The runtime ratio is obtained by comparing
with the performance of the proposed framework in a single-threaded
execution.

V. CONCLUSIONS

In this paper, we propose Starfish, an efficient P&R co-optimization
engine, to bridge the gap between placement and routing. We
demonstrate that the proposed flow can effectively reduce the total
routed wire length by routing with cell movement. Experimental
results on the ICCAD 2020 benchmark suites show that, with an
accurate cell movement gain estimation scheme and several efficient
routing algorithms, our co-optimizer outperforms all the contestants
with better solution quality and much shorter runtime.

VI. ACKNOWLEDGEMENT

The authors would like to thank Prof. Evangeline F.Y. Young for
her guidance and countless valuable discussions.

[1

—

[2

—

[3]

[4]

[5]

[6

[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

REFERENCES

K.-S. Hu, M.-J. Yang, T.-C. Yu, and G.-C. Chen, “ICCAD-2020 CAD
contest in routing with cell movement,” in Proc. ICCAD, 2020.

C. Huang, H. Lee, B. Lin, S. Yang, C. Chang, S. Chen, Y. Chang,
T. Chen, and I. Bustany, “NTUplace4dr: A detailed-routing-driven placer
for mixed-size circuit designs with technology and region constraints,”
IEEE TCAD, vol. 37, no. 3, pp. 669-681, 2018.

N. K. Darav, A. Kennings, A. F. Tabrizi, D. Westwick, and L. Beh-
jat, “Eh?Placer: A high-performance modern technology-driven placer,”
ACM TODAES, vol. 21, no. 3, pp. 1-27, 2016.

X. He, Y. Wang, Y. Guo, and E. F. Young, “Ripple 2.0: Improved
movement of cells in routability-driven placement,” ACM TODAES,
vol. 22, no. 1, pp. 1-26, 2016.

C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” I[EEE
TCAD, vol. 38, no. 9, pp. 1717-1730, 2018.

K.-R. Dai, C.-H. Lu, and Y.-L. Li, “GRPlacer: Improving routability and
wire-length of global routing with circuit replacement,” in Proc. ICCAD,
pp. 351-356, 2009.

W.-H. Liu, C.-K. Koh, and Y.-L. Li, “Optimization of placement solu-
tions for routability,” in Proc. DAC, pp. 1-9, 2013.

M. Pan and C. Chu, “IPR: An integrated placement and routing algo-
rithm,” in Proc. DAC, pp. 59-62, 2007.

M. Pan and C. Chu, “FastRoute: A step to integrate global routing into
placement,” in Proc. ICCAD, pp. 464-471, 2006.

W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR 2.0:
Multithreaded collision-aware global routing with bounded-length maze
routing,” IEEE TCAD, vol. 32, no. 5, pp. 709-722, 2013.

Y. Xu and C. Chu, “MGR: Multi-level global router,” in Proc. ICCAD,
pp. 250-255, 2011.

J. Liu, C.-W. Pui, F. Wang, and E. F Young, “CUGR: Detailed-
routability-driven 3d global routing with probabilistic resource model,”
in Proc. DAC, pp. 1-6, 2020.

C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
steiner minimal tree algorithm for vlsi design,” IEEE TCAD, vol. 27,
no. 1, pp. 70-83, 2007.

M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in Proc. ICCAD, pp. 48-55, 2005.

