
ATLAS: A Two-Level Layer-Aware Scheme for
Routing with Cell Movement

Xinshi Zang, Fangzhou Wang, Jinwei Liu, Martin D.F. Wong
Department of Computer Science and Engineering, The Chinese University of Hong Kong

{xszang, fzwang, jwliu}@cse.cuhk.edu.hk, mdfwong@cuhk.edu.hk

ABSTRACT
Placement and routing are two crucial steps in the physical design
of integrated circuits (ICs). To close the gap between placement
and routing, the routing with cell movement problem has attracted
great attention recently. In this problem, a certain number of cells
can be moved to new positions and the nets can be rerouted to
improve the total wire length. In this work, we advance the study
on this problem by proposing a two-level layer-aware scheme,
named ATLAS. A coarse-level cluster-based cell movement is first
performed to optimize via usage and provides a better starting point
for the next fine-level single cell movement. To further encourage
routing on the upper metal layers, we utilize a set of adjusted layer
weights to increase the routing cost on lower layers. Experimental
results on the ICCAD 2020 contest benchmarks show that ATLAS
achieves much more wire length reduction compared with the state-
of-the-art routing with cell movement engine. Furthermore, applied
on the ICCAD 2021 contest benchmarks, ATLAS outperforms the
first place team of the contest with much better solution quality
while being 3× faster.
ACM Reference Format:
Xinshi Zang, Fangzhou Wang, Jinwei Liu, Martin D.F. Wong. 2022. ATLAS:
A Two-Level Layer-Aware Scheme for Routing with Cell Movement. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’22),
October 30-November 3, 2022, San Diego, CA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3508352.3549470

1 INTRODUCTION
In physical design, placement and routing (P&R) are two crucial
problems that significantly impact the circuit performance, power,
and area (PPA). Due to their high complexity, both placement and
routing are further split into two sub-problems - global and de-
tailed placement, and global and detailed routing. Many efficient
algorithms have been proposed to deal with these sub-problems
separately [3, 8–10].

However, the final solution quality of P&R will inevitably be de-
graded with many sub-problems defined and solved independently,

The work described in this paper was partially supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China (Project No.
CUHK 14209320).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3549470

due to the misalignment between objectives. For example, several
approximations need to be made in placement to model wire length
and routability, e.g., by half perimeter wire length (HPWL) and pin
density respectively. The actual routed wire length and routabil-
ity will be degraded since these approximations are not accurate
enough.

To address the inconsistency between the objectives of placement
and routing, several different algorithms have been proposed, which
can be divided into two categories. In the first category [2, 11, 13, 14],
global routing is integrated into placement by invoking global
routers in the placement stage to get a congestion map, which can
help improve the wire length estimation accuracy during placement.
The second category contains several recent works [4, 7, 15, 16],
which incorporate placement into global routing by allowing cell
movement in the routing stage. Starfish [15], Huang et al. [7] and
Zou et al. [16] propose different heuristic algorithms to incremen-
tally optimize wire length by conducting iterative cell movement
and net rerouting. ILP-GRC [4] formulates this problem as an inte-
ger linear programming problem to simultaneously perform cell
movement and net rerouting. It is worth noting that these two cat-
egories are complementary to each other and can be combined to
further bridge the gap between placement and routing. In this work,
we focus on advancing the study on the routing with cell movement
problem by taking full advantage of higher routing layers.

Most global routers today will perform 3D routing with multiple
horizontal and vertical routing layers. Compared with routing on
lower layers, routing on upper metal layers has two major advan-
tages, that is, reduced power consumption and better routability.
According to [6], the R/C characteristic on each layer is different,
resulting in different power consumption for routing on different
layers. In general, the power consumption of routing on higher
metal layers is smaller than that on lower layers. Besides, routing
on higher layers can help relieve the routing congestion on lower
layers, thus improving the routability. To encourage routing on
upper layers, a minimum routing layer (MRL) constraint is adopted
to restrict the lowest routing layer for some nets [5, 6, 15]. Further-
more, Hu et al. [6] propose a layer-based power factor to model
routing costs for different layers.

In this work, we propose a two-level layer-aware scheme for
routing with cell movement, named ATLAS. At the beginning, AT-
LAS will perform a coarse-level cell movement where some cells
connected with nets having MRL constraints will be first merged to-
gether to form cell clusters, and these clustered cells will be moved
as a whole in this stage and the affected nets will be rerouted. By
doing so, those good movement directions in favor of multiple
cells can be explored. In the next fine-level cell movement, those
clustered cells will be unclustered and treated as single cells. By
moving each cell individually, the placement and routing solution

https://doi.org/10.1145/3508352.3549470
https://doi.org/10.1145/3508352.3549470

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Xinshi Zang, Fangzhou Wang, Jinwei Liu, Martin D.F. Wong

can be further improved. Besides, we utilize a set of adjusted layer
weights to encourage routing on upper metal layers, leading to
more usage of the lower-cost routing resources there. Finally, wire
length-driven pattern routing and maze routing are combined in
ATLAS to further refine the routing solution.

The main contributions of this work are summarized as follows.
• We propose a two-level layer-aware scheme to solve the
routing with cell movement problem. With coarse-level and
fine-level cell movement, the placement and routing solution
can be improved significantly.
• A set of adjusted layer weights is proposed and incorporated
into the two-level framework to encourage routing on higher
metal layers.
• ATLAS is capable of handling all kinds of constraints speci-
fied in both the ICCAD 2020 and 2021 contest and can sig-
nificantly improve the total weighted wire length compared
with the state-of-the-art methods 1 on each contest bench-
mark by 1.7% and 0.8% 2 respectively. Furthermore, ATLAS
is 3 times faster than the first place team [12] on the ICCAD
2021 contest benchmarks.

The rest of the paper is organized as follows. Section 2 introduces
the problem formulation and the proposed framework is discussed
in Section 3. Section 4 shows the experimental results and analysis.
The conclusion is drawn in Section 5.

2 PRELIMINARIES
In this section, we will present a unified formulation of the rout-
ing with cell movement problem, which covers both the ICCAD
2020 [5] and 2021 [6] contest. Important terms and their meanings
are summarized in Tab. 1.

Table 1: Terminology.

Term Description

𝐿 ×𝑌 ×𝑋 The routing grid with 𝐿 layers, 𝑌 rows and
𝑋 columns.

𝐺𝑙𝑖 ,𝑦𝑖 ,𝑥𝑖 The grid cell on layer 𝑙𝑖 , row 𝑦𝑖 , and column 𝑥𝑖

𝑆𝑢𝑝 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖) ,
𝐷𝑒𝑚 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖) ,
𝐶𝑎𝑝 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖)

The resource supply, demand and capacity
of𝐺𝑙𝑖 ,𝑦𝑖 ,𝑥𝑖

𝑙𝑤𝑖 , 𝑙𝑤′𝑖 The weight and adjusted weight of layer 𝑖
𝐶, 𝑐𝑖 𝐶 denotes the cell set and 𝑐𝑖 is the 𝑖-th cell
𝑀 The maximum number of moved cells

𝑃𝑜𝑠𝑐𝑖 , 𝑅𝑒𝑔𝑐𝑖
The position and movable region of 𝑐𝑖 ,
𝑃𝑜𝑠𝑐𝑖 ∈ R2, 𝑅𝑒𝑔𝑐𝑖 ⊂ R2

𝑁,𝑛𝑖 , |𝑛𝑖 |
𝑁 denotes the net set, 𝑛𝑖 is the 𝑖-th net and
|𝑛𝑖 | is the weighted wire length of 𝑛𝑖

𝑛𝑤𝑖 ,𝑚𝑟𝑙𝑖 The weight and minimum routing layer of net 𝑖
𝑆𝑒𝑔𝑖 The routing segments of 𝑛𝑖
𝑆𝑒𝑔𝑖,𝑗 The routing segments of 𝑛𝑖 on layer 𝑗
|𝑆𝑒𝑔𝑖 |, |𝑆𝑒𝑔𝑖,𝑗 | The length of the respective routing segments

2.1 Resource Supply and Demand of P&R
Different from traditional routing grids, in this work, the resource
supply and demand defined on each grid cell apply to both cell
1Starfish [15] and the first place team [12] are the state-of-the-art on the ICCAD 2020
and 2021 contest benchmarks respectively.
21.7% and 0.8% can be regarded as significant improvements since the gaps between
the top 2 teams in the contest 2020 [5] and 2021 [6] are just 0.7% and 0.5% respectively.

placement and net routing. A cell placed at ⟨𝑦𝑖 , 𝑥𝑖 ⟩ will consume
some of 𝑆𝑢𝑝 (𝑙 ′, 𝑦𝑖 , 𝑥𝑖) on layer 𝑙 ′ depending on the size and loca-
tion of its blockages. The contest [5] is different from [6] that there
are some extra demand rules for cells placed in the same position
or adjacent positions. Each net 𝑛 𝑗 passing through 𝐺𝑙𝑖 ,𝑦𝑖 ,𝑥𝑖 will
occupy one unit of 𝑆𝑢𝑝 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖). The variable 𝐷𝑒𝑚(𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖) is all
resource demands consumed by cell placement and net routing on
𝐺𝑙𝑖 ,𝑦𝑖 ,𝑥𝑖 and the variable𝐶𝑎𝑝 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖) is calculated by 𝑆𝑢𝑝 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖)
− 𝐷𝑒𝑚(𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖). An example is shown in Fig. 1(a), where the to-
tal resource demand of routing 𝑛1 on each layer is 5, 5, 9 and 7
respectively (from 𝑙1 to 𝑙4).

𝐴 𝐵

𝐶
𝐷
𝐸

Min

Routing

Layer

𝑙3: Vertical

𝑙4: Horizontal

𝑙2, Horizontal

𝑙1: Vertical

Net 𝑛1

(a) Original placement and routing.
𝐵′

𝐶
𝐷′

Min

Routing

Layer

Net 𝑛1

𝑙3: Vertical

𝑙4: Horizontal

𝑙2, Horizontal

𝑙1: Vertical

(b) After cell clustering.

Figure 1: One net with MRL on a 4 × 6 × 6 routing grid.

2.2 Weighted Wire Length (WWL)
In consideration of timing, a net weight 𝑛𝑤𝑖 will be set for each net
𝑛𝑖 to represent the timing criticality. A layer weight 𝑙𝑤 𝑗 will also
be assigned to each layer 𝑙 𝑗 to represent the cost of routing on 𝑙 𝑗 .
The total weighted wire length (TWWL) is then defined as

𝑇𝑊𝑊𝐿 =

|𝑁 |∑︁
𝑖=1
|𝑛𝑖 | =

|𝑁 |∑︁
𝑖=1

𝐿∑︁
𝑗=1

𝑛𝑤𝑖 ∗ 𝑙𝑤 𝑗 ∗ |𝑆𝑒𝑔𝑖, 𝑗 | (1)

Here, |𝑆𝑒𝑔𝑖, 𝑗 | is equal to the resource demand of routing 𝑛𝑖 on 𝑙 𝑗 . It
is worth noting that the TWWL can also be applied to those routing
problems where there is no specification for layer weights and net
weights. The weights in those problems can be regarded as 1. For
instance, in Fig. 1(a), the 𝑇𝑊𝑊𝐿 will just be 26 with net weights
and layer weights all being 1.

2.3 Problem Formulation
The routing with cell movement problem can be formulated as
follows:

Given a 3D routing grid and an initial placement and routing
solution, move cells and reroute nets to minimize TWWL while
satisfying:

(1) There should be no routing segments except vias under𝑚𝑟𝑙𝑖
for each net 𝑛𝑖 (Routing Constraint).

(2) The position of a cell must be in its movable region, i.e.,
𝑃𝑜𝑠𝑐𝑖 ∈ 𝑅𝑒𝑔𝑐𝑖 . The number of moved cells cannot exceed𝑀
(Movement Constraint).

(3) No overflow will be allowed, i.e., 𝐶𝑎𝑝 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖) ≥ 0 for each
𝐺𝑙𝑖 ,𝑦𝑖 ,𝑥𝑖 (Overflow Constraint).

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

3 METHODOLOGY
3.1 Overview
In this section, we will introduce the overall framework of ATLAS
which is shown in Fig. 2. Given an initial placement and routing
solution, ATLAS will first perform a congestion-aware incremental
3D global routing to reduce the TWWL and to free resources for
later cell movements (Sec. 3.2). After this preprocessing, a coarse-
level cell movement will be conducted by first clustering cells to
share the routing vias caused by the MRL constraint and then
iteratively moving cell clusters and rerouting nets, which will be
introduced in Sec. 3.3 and Sec. 3.4 respectively. After the cell cluster
movement, those clustered cells will be unclustered and an iterative
single cell movement and net rerouting process will be performed.
In the coarse-level and fine-level cell movement, a layer weight
adjustment technique is applied to encourage routing on upper
metal layers, which will be discussed in detail in Sec. 3.5. Finally,
ATLAS will utilize a wire length-driven incremental 3D global
routing to reduce the TWWL as much as possible.

Final placement and routing solutionFinal placement and routing solution

Initial placement and routing solutionInitial placement and routing solution

Via-sharing cell clustering

Iterative cell cluster movement and net rerouting

Coarse level: cluster-based cell movement

Preprocessing

Congestion-aware incremental 3D global routing

Postprocessing

Wire length-driven incremental 3D global routing

Fine level: single cell movement

Cell unclustering

Iterative single cell movement and net rerouting

Figure 2: Proposed framework.

3.2 Incremental 3D Global Routing
To satisfy the overflow constraint, 3D global routing of ATLAS is
conducted incrementally. Based on the existing routing solution,
nets to be rerouted will be ripped up and rerouted one by one
according to a net ordering. In ATLAS, the ordering of the nets
depends on the net weight, half-perimeter wire length (HPWL),
and the pin number. A net with a larger net weight, shorter HPWL,
and smaller pin number will be routed earlier. Both pattern routing
and maze routing are adopted to route a net.

3.2.1 Cost Function. In ATLAS, Eq. (2) is used to represent the
routing cost of passing through 𝐺𝑙𝑖 ,𝑦𝑖 ,𝑥𝑖 . If there is still unused
resource in the grid cell, the cost is computed according to the layer
weight and congestion cost. Otherwise, the cost is assigned with an

infinite value to avoid overflow. _1 is a parameter to balance wire
length and congestion. For congestion-aware routing, _1 is set to
be 5 in our implementation since this can help achieving the best
wire length without resource overflow in the experiments. In wire
length-driven routing, _1 is set to be 0 to ignore the congestion
impact.

𝐶𝑜𝑠𝑡 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖) =
{
𝑙𝑤𝑖 + _1

1+exp(𝐶𝑎𝑝 (𝑙𝑖 ,𝑦𝑖 ,𝑥𝑖)) , 𝐶𝑎𝑝 (𝑙𝑖 , 𝑦𝑖 , 𝑥𝑖) > 0
𝑖𝑛𝑓 , otherwise

(2)

3.2.2 Pattern Routing. Traditional approaches that perform 2D
pattern routing and layer assignment separately to generate 3D
routing topologies cannot optimize well towards different layer
weights. To better handle the layer weight factor, the 3D pattern
routing in [10] is adopted here to directly generate routing topolo-
gies to minimize the cost in Eq. (2). In this 3D pattern routing,
FLUTE [1] will first be invoked to generate a rectilinear Steiner
minimum tree (RSMT) for a multi-pin net. With the reverse order
of a depth-first search (DFS) traversal on the RSMT, the nodes will
be visited sequentially to compute their routing cost. A state of the
DP algorithm is defined as𝑚𝑠𝑐 (𝑖, 𝑙) or the minimum cost of routing
the sub-tree rooted at node 𝑖 and finishing the routing on layer
𝑙 . There is no on-layer edge sharing and only the sharing of via
edges is considered in caculating each𝑚𝑠𝑐 (𝑖, 𝑙). The minimum cost
of routing the whole tree will be𝑚𝑖𝑛0<=𝑙<=𝐿𝑚𝑠𝑐 (𝑟, 𝑙), where node
𝑟 is the root. Consequently, the state space for the DP algorithm
will be 𝑂 (𝑁𝐿), where 𝑁 is the number of nodes in the RSMT and
𝐿 is the number of layers. The computational complexity of the
algorithm will be 𝑂 (𝑁𝐿𝐷) where D is the maximum degree of the
nodes. Since D is almost always smaller than or equal to 4 and L is
usually small, the algorithm can run very efficiently.

3.2.3 Maze Routing. Due to the limited routing quality of pattern
routing, maze routing can be applied to further improve the in-
cremental routing result. Similar to [10, 15], a two-step routing
strategy is adopted. In the first step, a coarsened routing grid graph
is constructed by compressing a block of 5 × 5 grid cells into one
coarsened cell. An RSMT for each net is generated by FLUTE on
the coarsened grid graph and a route guide is then created with
those grid cells within the coarsened cells covered by the RSMT. In
the second step, maze routing is applied to connect all pins with the
minimum cost within the route guide. This two-step routing strat-
egy can reduce search space for maze routing while not sacrificing
much routing quality. This two-step maze routing is conducted
after pattern routing for all nets.

3.3 Via-Sharing Cell Clustering
In the coarse-level cell movement, ATLAS will firstly perform cell
clustering to address the vias issue resulting from the MRL con-
straint. Fig. 1(a) shows an example of such a via issue. In the problem
formulation, pins of the same net and residing in the same grid
cell will share one via to move to the MRL. By clustering cell 𝐴
and 𝐵, 𝐷 and 𝐸 into new hyper-cell 𝐵′ and 𝐷 ′ as in Fig. 1(b), 𝐴 and
𝐵 can share one via and so do 𝐷 and 𝐸. Therefore, the number of
vias needed can be reduced by almost half. By this via-oriented
cell clustering, ATLAS can free plenty of resources for later cell
movement and net routing.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Xinshi Zang, Fangzhou Wang, Jinwei Liu, Martin D.F. Wong

Algorithm 1: Via-sharing cell clustering
Input: Single cell set𝐶
Output: Cell cluster set𝐶′

1 foreach 𝑐𝑖 ∈ 𝐶 do
2 Insert a new cell cluster containing 𝑐𝑖 into𝐶′

3 𝐶𝑙𝑢𝑡𝑒𝑟𝑖𝑛𝑔𝐺𝑎𝑖𝑛𝑄 ← 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒 ()
4 foreach connected cluster pair, ⟨𝑐′

𝑖
, 𝑐′

𝑗
⟩ with 𝑐′

𝑖
, 𝑐′

𝑗
∈ 𝐶′ do

5 𝑔𝑎𝑖𝑛 ← reduced #MRL-vias by clustering ⟨𝑐′
𝑖
, 𝑐′

𝑗
⟩

6 if gain > minGain && dist(𝑐′
𝑖
, 𝑐′

𝑗
) < maxDist then

7 Insert { ⟨𝑐′
𝑖
, 𝑐′

𝑗
⟩, 𝑔𝑎𝑖𝑛} into𝐶𝑙𝑢𝑡𝑒𝑟𝑖𝑛𝑔𝐺𝑎𝑖𝑛𝑄

8 while CluteringGainQ ≠ {} do
9 { ⟨𝑐′

𝑖
, 𝑐′

𝑗
⟩, 𝑔𝑎𝑖𝑛} ← 𝐶𝑙𝑢𝑡𝑒𝑟𝑖𝑛𝑔𝐺𝑎𝑖𝑛𝑄.𝑝𝑜𝑝 ()

10 if no overflow when merging ⟨𝑐′
𝑖
, 𝑐′

𝑗
⟩ && 𝑐′

𝑖
, 𝑐′

𝑗
∈ 𝐶′ then

11 Move 𝑐′
𝑖
to 𝑐′

𝑗
(or 𝑐′

𝑗
to 𝑐′

𝑖
) and reroute affected nets

12 Form a new cell cluster 𝑐′
𝑘
with cells in 𝑐′

𝑖
and 𝑐′

𝑗

13 Remove 𝑐′
𝑖
and 𝑐′

𝑗
and insert 𝑐′

𝑘
in𝐶′

14 foreach cluster 𝑐′𝑝 ∈ 𝐶′ connected with 𝑐′𝑘 do
15 𝑔𝑎𝑖𝑛← reduced #MRL-vias by clustering ⟨𝑐′

𝑘
, 𝑐′𝑝 ⟩

16 if gain > minGain && dist(𝑐′
𝑘
, 𝑐′𝑝) < maxDist then

17 Insert { ⟨𝑐′
𝑘
, 𝑐′𝑝 ⟩, 𝑔𝑎𝑖𝑛} into𝐶𝑙𝑢𝑡𝑒𝑟𝑖𝑛𝑔𝐺𝑎𝑖𝑛𝑄

The detailed cell clustering algorithm is shown in Algo. 1. Firstly,
every single cell forms an initial cell cluster (line 2). The clustering
gain of a pair of cell clusters is defined as the reduction in via
number due to the MRL constraint after clustering. To improve
the clustering efficiency, two thresholds, 𝑚𝑖𝑛𝐺𝑎𝑖𝑛 and 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 ,
are used to filter out cluster pairs which only bring small gains or
are too far away from each other (line 6 to 7). From line 8 to 17, a
pair of cell clusters are selected greedily to maximize the clustering
gain and these two cell clusters will be moved into the same grid
cell and affected nets will be rerouted if there is no overflow. The
newly generated cell cluster will be processed recursively in this
clustering procedure. To efficiently maintain the priority queue for
clustering gain, the removal of those outdated elements from the
queue is delayed to the validity checking step in line 10.

3.4 Iterative Cell Movement and Net Rerouting
The iterative cell movement and net rerouting play a crucial role
in both coarse-level and fine-level cell movement. Since cell clus-
ters can be regarded as special hyper-cells, we will introduce the
following algorithm from the perspective of a single cell.

3.4.1 Target Region. The basic target movement region of a cell
is a median box formed by the median 𝑥 and 𝑦 coordinates of its
connected cells. To increase the search space, we will expand the
basic target region with an extra margin. The final target region
is the intersection of the expanded target region and the specified
movable region. Each cell can be moved to its target region if the
move can bring at least a certain amount of reduction on the WWL.

3.4.2 Net Rerouting. To speed up the net rerouting after moving
one cell, the 𝐴∗-based partial rerouting technique used in [7, 15] is
adopted. For each net to be rerouted after a cell movement, some of
its routing segments may become redundant and will be removed.

Algorithm 2: Iterative cell movement and net rerouting
Input: Cell set𝐶 ; net set 𝑁 ; unique net weight set 𝑁𝑊

Output: New placement and routing solution
1 foreach cell 𝑐𝑖 ∈ 𝐶 , 𝑝′ ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑒𝑔𝑖𝑜𝑛 (𝑐𝑖) do
2 𝑒𝑠𝑡𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 (𝑐𝑖 , 𝑝′) ← 0
3 foreach 𝑛 𝑗 ∈ nets connected with 𝑐𝑖 do
4 𝑠𝑛 𝑗 ← remaining sub-net of 𝑛 𝑗 after removing 𝑐𝑖
5 𝑙1, ⟨𝑦1, 𝑥1 ⟩ ← layer of 𝑛 𝑗 pin on 𝑐𝑖 , 𝑝′

6 𝑑 ← min{𝑙2,𝑦2,𝑥2}∈𝑠𝑛 𝑗
𝐿𝑈𝑇 (Δ𝑥 ,Δ𝑦, 𝑙1, 𝑙2,𝑚𝑟𝑙 𝑗)

7 𝑒𝑠𝑡𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 (𝑐𝑖 , 𝑝′) += |𝑠𝑛 𝑗 | + 𝑑 − |𝑛 𝑗 |

8 𝑆𝑜𝑟𝑡 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑒𝑔𝑖𝑜𝑛 (𝑐𝑖) , ∀𝑐𝑖 ∈ 𝐶 ; // Large estMoveGain first

9 𝑆𝑜𝑟𝑡 𝑁𝑊 ; // Large weight first

10 for 𝑛𝑤 ∈ 𝑁𝑊 do
11 Candidate cell set𝐶∗ ← {}
12 foreach net 𝑛𝑖 ∈ 𝑁 do
13 if 𝑛𝑤𝑖 ≥ 𝑛𝑤 then
14 Insert the cells connected with 𝑛𝑖 into𝐶∗

15 𝑚𝑖𝑛𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 ← An initial gain threshold
16 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 ← 𝑓 𝑎𝑙𝑠𝑒

17 while not converge do
18 𝑡𝑜𝑡𝑎𝑙𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 ← 0
19 foreach cell 𝑐𝑖 ∈ 𝐶∗ do
20 foreach 𝑝′ ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑒𝑔𝑖𝑜𝑛 (𝑐𝑖) do
21 if 𝑒𝑠𝑡𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 (𝑐𝑖 , 𝑝′) <𝑚𝑖𝑛𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 then
22 Break
23 𝑚𝑜𝑣𝑒𝐺𝑎𝑖𝑛 ← move 𝑐𝑖 to 𝑝′ and reroute nets
24 if𝑚𝑜𝑣𝑒𝐺𝑎𝑖𝑛 >𝑚𝑖𝑛𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 then
25 𝑡𝑜𝑡𝑎𝑙𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 +=𝑚𝑜𝑣𝑒𝐺𝑎𝑖𝑛

26 Break
27 else
28 Move 𝑐𝑖 back to its original position

29 𝑚𝑖𝑛𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 ← max(10−6,𝑚𝑖𝑛𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 − 1)
30 Update cell 𝑒𝑠𝑡𝑀𝑜𝑣𝑒𝐺𝑎𝑖𝑛 and reroute affected nets
31 if totalMoveGain == 0 then
32 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 ← 𝑡𝑟𝑢𝑒

The remaining segments will form a sub-net connecting the other
cells except the moved one. A multi-source single-target 𝐴∗ search
algorithm will then be applied to find a path connecting the sub-net
to the new position of the moved cell with the minimum cost.

3.4.3 Movement Gain Estimation. The gain of moving one cell
is defined as the WWL reduction after cell movement and net
rerouting. To evaluate quickly the gain of moving one cell to each
position of its target region, we first pre-compute a look-up ta-
ble (𝐿𝑈𝑇) to calculate the minimum routing distance between any
two points in the routing grid considering the layer weights and
the MRL. Given two points, (𝑙1, 𝑦1, 𝑥1) and (𝑙2, 𝑦2, 𝑥2), and the𝑚𝑟𝑙 ,
𝐿𝑈𝑇 (Δ𝑦,Δ𝑥 , 𝑙1, 𝑙2,𝑚𝑟𝑙) will return the minimumWWL of connect-
ing these two points. The newWWL after moving one cell can then
be estimated by the WWL of the remaining sub-net plus the mini-
mum routing distance between the sub-net and the new position. It
is worth noting that this LUT-based gain estimation provides an up-
per bound for the gain of each cell movement without considering

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

routing resource constraints. Although the actual routing gain can
sometime be smaller than the estimation one, no cell movement
with potential gain will be omitted with this gain estimation.

3.4.4 Main Flow. The whole algorithm of iterative cell movement
and net routing is shown in Algo. 2. The estimated movement gain
for each cell is initialized from line 1 to 7. In line 8, the points in
the target region of each cell are sorted in descending order of their
estimated movement gain. Since the nets with higher weights will
have more impacts on TWWL, cells connected by nets with larger
weights will be first put into the candidate set of cells to move
(line 12 to 14). Furthermore, due to resource limitations, cells with
larger estimated movement gain should be given higher priority
to move. Therefore, a minimum movement gain threshold is set
and decreased gradually in each iteration (line 21, 24, and 29). An
𝐴∗ search-based partial routing is applied in line 23 to speed up
runtime. At the end of each iteration, the maze routing is invoked
to reroute the whole nets which are affected to improve the TWWL
(line 30).

3.4.5 Cell Putting back. Although the maximum number of moved
cells is constrained in the problem formulation, we temporarily
ignore this constraint and keep moving cells and rerouting nets
until there is no movement gain anymore. After that, we will put
cells that only bring fewer gains back to their original positions
to satisfy the movement constraint. The cell putting back process
is conducted systematically in a similar way as for the iterative
cell movement and net rerouting in Sec. 3.4. The only difference is
that the target position for each moved cell is now their original
position. The net rerouting technique in Sec. 3.4.2 is also adopted
to reroute those affected nets after a cell is put back. This technique
can avoid getting trapped in local optima due to some bad moves
that use up the movement quota. Note that this technique is applied
in both coarse-level cell cluster movement and fine-level single cell
movement.

3.5 Adjustment on Layer Weights
In the ICCAD 2021 contest [6], the metal layers are divided into
several groups vertically and each group is assigned a layer weight
(In alignment with this setting, metal layers in traditional global
routing without this layer grouping can be regarded as being all in
the same group with layer weight one). Although upper layers may
have enough routing resources and smaller layer weights, they can
be hardly accessed when the lower routing layers are congested.
Encouraging the use of upper layers at the early optimization stage
may help improving the performance of our greedy algorithms
and lead to a better optimum, where lower routing layers are less
congested and low-cost higher routing layers are more sufficiently
used. To that end, we adjust the weights of the metal layers in the
same group by increasing the weights of the lower layers based on
Eq. (3). Here, layer 𝑗 is the top layer in the group of layer 𝑖 and _2
is an adjustment step. For example, if the initial layer weights are
[1.0, 1.0, 1.0, 0.8, 0.8, 0.8] (from 𝑙1 to 𝑙6), the adjusted layer weights
will be [1.04, 1.02, 1.0, 0.84, 0.82, 0.8] with _2 being 0.02.

𝑙𝑤 ′𝑖 = 𝑙𝑤𝑖 + (𝑗 − 𝑖) ∗ _2 (3)

In ATLAS, these adjusted layer weights will be applied in Eq. (2)
throughout the coarse-level cell movement to encourage routing
on upper metal layers. In the fine-level cell movement and postpro-
cessing stages, the actual layer weights are used back to align with
the final objective while following the routing guidance obtained
in the coarse-level cell movement stage.

4 EXPERIMENTS
We used C++ to implement ATLAS and perform all the experiments
on a 64-bit Linux workstation with Intel Xeon 2.9 GHz CPUs and
256 GB memory. Our algorithm is tested on both ICCAD 2020
(CAD20) and ICCAD 2021 (CAD21) routing with cell movement
benchmarks [5, 6]. Consistent with the two contests, eight threads
are enabled for our program.

Table 2: Benchmark statistic.

Case ID #Cells #Nets 𝐿 × 𝑌 × 𝑋
CAD20-case3 2,735 2,644 7 × 27 × 33
CAD20-case3B 2,604 2,563 7 × 29 × 29
CAD20-case4 204,206 179,996 12 × 277 × 277
CAD20-case4B 207,347 183,137 12 × 277 × 277
CAD20-case5 96,682 92,546 16 × 104 × 103
CAD20-case5B 96,689 92,559 16 × 104 × 103
CAD20-case6 352,269 332,080 16 × 237 × 236
CAD20-case6B 352,234 332,045 16 × 237 × 236
CAD21-case3 2,735 2,644 7 × 27 × 33
CAD21-case3B 2,738 2,644 7 × 27 × 33
CAD21-case4 96,689 92,559 16 × 104 × 103
CAD21-case4B 96,690 92,566 16 × 104 × 103
CAD21-case5 204,206 179,996 12 × 277 × 277
CAD21-case5B 204,206 179,996 12 × 277 × 277
CAD21-case6 352,234 332,063 16 × 237 × 236
CAD21-case6B 352,302 332,118 16 × 237 × 236

4.1 Results on CAD20 and CAD21 Benchmarks
The statistics of CAD20 and CAD21 benchmarks are summarized
in Tab. 2. In general, CAD20 and CAD21 benchmarks are similar in
terms of the number of cells, the number of nets, and the routing
grids but with different initial placement and routing solutions.
Besides, the optimization objectives and constraints in the two
benchmark sets are also slightly different. In CAD20 benchmarks,
net weights, layer weights, and movable region constraints are not
specified, but a number of extra demand rules are imposed on cell
placement. Necessary adaptations are made in order to run ATLAS
on CAD20 benchmarks, e.g., the net weights and layer weights are
all set to 1.

For CAD20 benchmarks, four baselines are chosen from the
latest works, including Starfish [15], Huang et al. [7] and Zou et
al. [16], and the winner in the ICCAD 2020 contest. Note that
we cannot compare with ILP-GRC [4] since it does not handle
those constraints defined in both CAD20 and CAD21 benchmarks.
The results are listed in Tab. 3. Among the four baselines, Starfish
outperforms Huang et al. and Zou et al. with a slight advantage
in terms of scores. As a contrast, ATLAS can reduce 1.7% wire
length compared to Starfish which is significantly more than the
improvement of Starfish over the other baselines in Tab. 3. The
runtime of ATLAS is longer than that of Starfish and Zou et al.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Xinshi Zang, Fangzhou Wang, Jinwei Liu, Martin D.F. Wong

Table 3: Results on CAD20. The top 1 team is from the ICCAD 2020 contest. The results of the four baselines are obtained from
papers [7, 15, 16]. The score is calculated by final TWWL − initial TWWL and weights of nets and layers are all 1. RT denotes
runtime.

Benchmarks Starfish [15] Huang et al. [7] Zou et al. [16] 1st Place Team ATLAS
Case ID Initial TWWL Score RT (s) Score RT (s) Score RT (s) Score RT (s) Score RT (s)
case3 32,600 11,610 2 11,574 24 11,591 2 11,425 34 11,745 13
case3B 29,748 11,327 1 11,309 18 11,176 2 11,237 31 11,451 11
case4 4,680,681 2,064,790 260 2,064,165 1952 2,064,519 433 2,046,811 2,221 2,083,357 1,098
case4B 4,886,698 2,200,820 284 2,196,644 2050 2,198,445 429 2,182,574 2,299 2,218,962 1,195
case5 1,763,627 699,626 111 695,344 999 694,338 113 695,219 903 707,887 452
case5B 1,721,530 668,351 103 664,440 989 664,605 156 664,347 886 678,901 428
case6 7,188,481 2,737,028 684 2,737,732 2918 2,735,891 1,357 2,721,274 3,171 2,791,708 2,565
case6B 7,340,802 2,785,061 932 2,787,052 3265 2,773,149 1,566 2,748,097 3,406 2,859,700 3,241
Sum 27,644,167 11,178,613 2,377 11,168,260 12215 11,153,714 4,058 11,080,984 12,951 11,363,711 9,002
Ratio - 1.000 1.000 0.999 5.139 0.998 1.707 0.991 5.448 1.017 3.787

Table 4: Results on CAD21. The top 3 teams are from the ICCAD 2021 contest. Their results are provided by the contest
organizer [6].

Benchmarks 1st Place Team 2nd Place Team 3rd Place Team ATLAS
Case ID Initial TWWL Score RT (s) Score RT (s) Score RT (s) Score RT (s)
case3 29,707 9,901 2,060 9,573 6 9,569 6 9,787 11
case3B 30,074 10,124 2,141 9,813 6 9,812 6 10,018 11
case4 1,590,850 610,719 3,526 606,053 474 597,955 726 611,618 447
case4B 1,590,850 584,771 3,527 579,469 479 571,747 760 585,863 436
case5 3,671,190 1,252,540 3,546 1,245,000 1,546 1,234,230 1,515 1,256,390 1,582
case5B 3,665,610 1,252,670 3,543 1,243,930 1,485 1,234,840 1,531 1,256,050 1,612
case6 5,602,310 1,207,500 3,564 1,204,010 3,153 1,162,360 2,271 1,228,050 2,166
case6B 5,554,350 1,186,130 3,564 1,184,140 2,923 1,143,930 2,287 1,205,880 2,035
Sum 21,735,080 6,114,354 25,471 6,081,987 10,072 5,964,443 9,102 6,163,655 8,300
Ratio - 1.000 1.000 0.995 0.395 0.975 0.357 1.008 0.326

and this is due to much more time needed to explore cell cluster
movement and routing on upper layers in ATLAS. Compared with
Huang et al. whose performance is nearly equal to Starfish’s, the
runtime of ATLAS is even smaller with one possible reason that the
LUT-based movement gain estimation in ATLAS should be much
faster than the search-based estimation used in Huang et al.

For CAD21 benchmarks, we compare our results with the top
three winners in the ICCAD 2021 contest. Those existing works,
including Starfish, Huang et al. and Zou et al., do not handle those
constraints in CAD21 benchmarks and cannot be compared with.
As shown in Tab. 4, our algorithm improves over the first place
in the contest by around 0.8 percent with respect to the TWWL
reduction and spends only around 32.6% time used by them.

4.2 Trend in Layer Utilization
We conduct further experiments to reveal one reason why ATLAS
can reduce more wire length on CAD20 benchmarks. Fig. 3 shows
the difference in the total routing resource demand on each layer
between ATLAS and Starfish. A bar below zero means ATLAS
creates less demand on that layer. The figure shows that ATLAS
is able to shift part of the demand on lower layers to upper layers
and thus can reduce the routing demand on the lower metal layers
which are usually more congested.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16

−4

−2

0

2

·104

Layer demand difference

Figure 3: Difference of layer demand on case6 of CAD20
(ATLAS − Starfish).

4.3 Experiment without Cell Movement Limit
Besides, to fully test the potential of our algorithm, we run ATLAS
without cell movement limit and let ATLAS optimize the placement
and routing as much as possible. Note that originally the maximum
number of the moved cells cannot exceed 30% the number of cells
in each benchmark. We compare our results with 30% movable
cells and 100% movable cells to the same results of the first place in
ICCAD 2021 contest as disclosed in [6]. The comparison of weighted
wire length reduction is illustrated in Fig. 4. The results show that
relaxing the cell movement limit, ATLAS can still further improve
the quality of placement and routing and the wire length reduction
of ATLAS still has a slight advantage over that of the first place.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

case4 case4B case5 case5B case6 case6B

0.6

0.8

1

1.2

1.4
·106

1st (30%)

ATLAS (30%)

1st (100%)

ATLAS (100%)

Figure 4: Weighted wire length reduction with different per-
centages of movable cells.

4.4 Ablation Study on Two Level Scheme
Finally, an ablation study is conducted to investigate the individual
contribution of coarse level movement and fine level movement in
the proposed two-level scheme. Two different versions of ATLAS
(i.e., ATLAS* and ATLAS’) are created by only keeping coarse level
movement and fine level movement respectively in the original
framework shown in Fig. 2. The comparison of weighted wire
length reduction on six largest benchmarks in CAD20 and CAD21
is depicted in Fig. 5. Compared with ATLAS*, ATLAS’ performs
slightly better on smaller benchmarks, like case5 in CAD20 and
case4 in CAD21, but its performance drops on larger benchmarks,
like case6 in CAD20 and CAD21. Taking the advantages of both
coarse level and fine level movement, ATLAS can always further
improve the wire length reduction in all benchmarks.

5 CONCLUSION
To bridge the gap between placement and routing, we propose a
novel two-level layer-aware scheme for routing with cell movement.
These two coarse-level and fine-level cell movements are combined
to significantly reduce the number of vias and the total weighted
wire length. Furthermore, a layer weight adjustment technique
is proposed to encourage routing on higher layers. Experimental
results show the superiority of our algorithm compared with the
state-of-the-art methods on both CAD20 and CAD21 benchmarks.

6 ACKNOWLEDGEMENT
The authors truly appreciate Prof. Evangeline F.Y. Young for her
kind guidance and valuable suggestions.

REFERENCES
[1] Chris Chu. 2004. FLUTE: Fast lookup table based wirelength estimation technique.

In IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-
2004. IEEE, 696–701.

[2] Ke-Ren Dai, Chien-Hung Lu, and Yih-Lang Li. 2009. GRPlacer: Improving routabil-
ity and wire-length of global routing with circuit replacement. In Proceedings of
the 2009 International Conference on Computer-Aided Design. 351–356.

[3] Yixiao Ding, Chris Chu, and Wai-Kei Mak. 2017. Pin accessibility-driven detailed
placement refinement. In Proceedings of the 2017 ACM on International Symposium
on Physical Design. 133–140.

[4] Tiago Augusto Fontana, Erfan Aghaeekiasaraee, Renan Netto, Sheiny Fabre
Almeida, Upma Gandh, Aysa Fakheri Tabrizi, David Westwick, Laleh Behjat,
and José Luís Güntzel. 2021. ILP-Based Global Routing Optimization with Cell
Movements. In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[5] Kai-ShunHu,Ming-Jen Yang, Tao-Chun Yu, and Guan-Chuen Chen. 2020. ICCAD-
2020 CAD contest in routing with cell movement. In Proceedings of the 39th
International Conference on Computer-Aided Design. 1–4.

case4 case4B case5 case5B case6 case6B

0.5

1

1.5

2

2.5

3
·106

ATLAS*
ATLAS’
ATLAS

(a) CAD20.

case4 case4B case5 case5B case6 case6B

0.6

0.8

1

1.2

·106

ATLAS*
ATLAS’
ATLAS

(b) CAD21.

Figure 5:Weightedwire length reduction for only coarse level
movement (ATLAS*), only fine level movement (ATLAS’) and
both (ATLAS).

[6] Kai-Shun Hu, Tao-Chun Yu, Ming-Jen Yang, and Chin-Fang Cindy Shen. 2021.
2021 ICCAD CAD Contest Problem B: Routing with Cell Movement Advanced.
In Proceedings of the 40th International Conference on Computer-Aided Design.

[7] Zhipeng Huang, Haishan Huang, Runming Shi, Xu Li, Xuan Zhang, Weijie Chen,
Jiaxiang Wang, and Ziran Zhu. 2021. Detailed Placement and Global Routing
Co-Optimization with Complex Constraints. Electronics 11, 1 (2021), 51.

[8] Haocheng Li, Gengjie Chen, Bentian Jiang, Jingsong Chen, and Evangeline FY
Young. 2019. Dr. cu 2.0: A scalable detailed routing framework with correct-by-
construction design rule satisfaction. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1–7.

[9] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek
Khailany, and David Z Pan. 2020. Dreamplace: Deep learning toolkit-enabled gpu
acceleration for modern vlsi placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 40, 4 (2020), 748–761.

[10] Jinwei Liu, Chak-Wa Pui, FangzhouWang, and Evangeline FY Young. 2020. CUGR:
Detailed-routability-driven 3D global routing with probabilistic resource model.
In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[11] Wen-Hao Liu, Cheng-Kok Koh, and Yih-Lang Li. 2013. Optimization of place-
ment solutions for routability. In 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 1–9.

[12] Canhui Luo, Jinghu Liang, Zhenxuan Xie, Zhouxing Su, and Zhipeng Lü.
2021. The 1st Place Team Video Show. ICCAD-2021 CAD Contest, http://iccad-
contest.org/2021/ProblemB-cada0136.mp4 (2021).

[13] Min Pan and Chris Chu. 2006. FastRoute: A step to integrate global routing
into placement. In Proceedings of the 2006 IEEE/ACM international conference on
Computer-aided design. 464–471.

[14] Min Pan and Chris Chu. 2007. IPR: An integrated placement and routing algo-
rithm. In Proceedings of the 44th Annual Design Automation Conference. 59–62.

[15] FangzhouWang, Lixin Liu, Jingsong Chen, Jinwei Liu, Xinshi Zang, andMartin DF
Wong. 2021. Starfish: An Efficient P&R Co-Optimization Engine with A∗-based
Partial Rerouting. In 2021 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE.

[16] Peng Zou, Zhifeng Lin, Chenyue Ma, Jun Yu, and Jianli Chen. 2021. Late Breaking
Results: Incremental 3D Global Routing Considering Cell Movement. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Resource Supply and Demand of P&R
	2.2 Weighted Wire Length (WWL)
	2.3 Problem Formulation

	3 Methodology
	3.1 Overview
	3.2 Incremental 3D Global Routing
	3.3 Via-Sharing Cell Clustering
	3.4 Iterative Cell Movement and Net Rerouting
	3.5 Adjustment on Layer Weights

	4 Experiments
	4.1 Results on CAD20 and CAD21 Benchmarks
	4.2 Trend in Layer Utilization
	4.3 Experiment without Cell Movement Limit
	4.4 Ablation Study on Two Level Scheme

	5 Conclusion
	6 Acknowledgement
	References

