
FastPass: Fast Pin Access Analysis with
Incremental SAT Solving

Fangzhou Wang∗
fzwang@cse.cuhk.edu.hk

CSE Department
The Chinese University of Hong Kong

Hong Kong

Jinwei Liu∗
jwliu@cse.cuhk.edu.hk

CSE Department
The Chinese University of Hong Kong

Hong Kong

Evangeline F. Y. Young
fyyoung@cse.cuhk.edu.hk

CSE Department
The Chinese University of Hong Kong

Hong Kong

ABSTRACT
Pin access analysis is a critical step in detailed routing. With com-
plicated design rules and pin shapes, efficient and accurate pin
accessibility evaluation is desirable in many physical design scenar-
ios. To this end, we present FastPass, a fast and robust pin access
analysis framework, which first generates design rule checking
(DRC)-clean pin access route candidates for each pin, pre-computes
incompatible pairs of routes, and then uses incremental SAT solving
to find an optimized pin access scheme. Experimental results on
the ISPD 2018 benchmarks show that FastPass produces DRC-clean
pin access schemes for all cases while being 14.7× faster than the
known best pin access analysis framework on average.

CCS CONCEPTS
• Hardware→Wire routing.

KEYWORDS
Physical design, detailed routing, pin access, boolean satisfiability

ACM Reference Format:
Fangzhou Wang, Jinwei Liu, and Evangeline F. Y. Young. 2023. FastPass:
Fast Pin Access Analysis with Incremental SAT Solving. In Proceedings
of the 2023 International Symposium on Physical Design (ISPD ’23), March
26–29, 2023, Virtual Event, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3569052.3571879

1 INTRODUCTION
With the scaling of technology nodes and higher levels of integra-
tion, standard cell pin access has become non-trivial with compli-
cated design rules and off-grid pin shapes on lower metal layers [14].

Under such extreme circumstances, as an early step in the de-
tailed routing flow, pin access analysis will be responsible for plan-
ning violation-free paths from pin shapes to some easily accessible
grid points for each net and pin, such that in the later path searching
stage, routing can end at some on-track locations without worrying
about possible conflicts between pin access segments (i.e., metal
wires and vias) and fixed metals (e.g., blockages, pin shapes, etc.).

Being a vital part of the detailed routing process that enables
design rule checking (DRC)-clean routing solutions, a good pin

∗Both authors contributed equally to this work

ISPD ’23, March 26–29, 2023, Virtual Event, USA
© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record will be published in Proceedings
of the 2023 International Symposium on Physical Design (ISPD ’23), March 26–29, 2023,
Virtual Event, USA, https://doi.org/10.1145/3569052.3571879.

access analysis framework (PAAF) can play important roles in
other physical design scenarios too, including but not limited to
detailed placement, global routing, and even placement and routing
(P&R) co-optimization [3, 7, 9]. Ding et al. [3] propose a detailed
placement refinement approach to improve pin accessibility, where
the pin accessibility is modeled by a cost function, which does not
consider specific design rules and can become more accurate with a
pin access engine. TritonRoute-WXL [9] has a pin access engine [8]
integrated to provide global routing with a better estimation of
the routing resources consumed by pin access. The work of [7]
describes an in-route placement refinement approach that conducts
exact pin access analysis and greatly accelerates DRC convergence.

Various pin access approaches have emerged in recent years.
Ozdal [15] proposes a multicommodity flow model to find escape
routes for pins in dense clusters. Nieberg [14] proposes to first
generate a set of design rule conforming paths and then search for
conflict-free path sets by branch-and-bound. Xu et al. [16] propose
to guide regular routing with standard cell pin access planning for
better routability under self-aligned double patterning constraints.
Dr. CU [10] uses L-shape routes and off-track vias to access hard-to-
access pins. Recently, Kahng et al. [8] present a design rule-aware
PAAF, which uses dynamic programming (DP) for both intra-cell
and inter-cell pin access planning. We refer to the framework as
TOP in the rest of this paper. An assumption is made for their DP-
based algorithm that only adjacent pins in terms of x-coordinates
could have conflicts, which does not always hold. Thus, each gen-
erated inter-cell pin access pattern must be thoroughly validated
by a DRC engine, which significantly slows down the process.

Addressed by Kahng et al. [8], efficiency is considered one of
the most important aspects of a PAAF since placement can change
frequently during physical design steps like detailed placement,
sizing, and buffering, where a large amount of inter-cell pin access
analysis is required. Therefore, in this work, we present a boolean
satisfiability (SAT)-based framework named FastPass for efficient
and correct-by-construction pin access scheme generation. Our
main contributions are summarized as follows.

• We introduce a pre-processing flow, which consists of in-
stance pattern-based analysis and inter-instance analysis, to
efficiently generate DRC-clean pin access route candidates
for each pin and pre-compute inter-route conflicts.
• Anovel sweep line-style algorithm is introduced for quick de-
sign rule checking and inter-route conflict detection, which
makes the pre-processing flow highly efficient.

https://doi.org/10.1145/3569052.3571879
https://doi.org/10.1145/3569052.3571879
https://doi.org/10.1145/3569052.3571879

ISPD ’23, March 26–29, 2023, Virtual Event, USA Fangzhou Wang, Jinwei Liu, and Evangeline F. Y. Young

• We propose an SAT encoding for the conflict-free route se-
lection problem and adopt the incremental SAT solving tech-
nique [13] to find a pin access scheme that is not only DRC-
clean but also optimized towards custom objectives.
• We conduct experiments on the ISPD 2018 detailed routing
contest benchmark suite [12]. Experimental results show
that our proposed framework can produce DRC-clean pin
access schemes for all cases while being on average 14.7×
faster than the state-of-the-art PAAF (TOP) [8]. We also test
FastPass on a 7nm design to demonstrate its scalability on
advanced technology nodes.

The rest of the paper is organized as follows. In Section 2, we will
define the problem and introduce some preliminary concepts.We in-
troduce our methodology in Section 3 and discuss our experimental
results in Section 4.

2 PRELIMINARIES
2.1 Problem Formulation
We formally define the problem of DRC-clean pin access scheme
generation as follows.

Given a design (with tracks, cell instances, nets, etc.), find a
routing scheme such that each net pin is connected to a nearby grid
point using routes (containing wires and vias), such that no routes
will cause DRC violations with fixed metals or each other.

Figure 1a shows a toy example with three simplified cell in-
stances, and Figure 1b gives an example of a DRC-clean pin access
scheme. The difficulty of this problem lies in: (1) The complex pin
shapes must be analyzed to rule out routes having DRC violations
with them; (2) The routes for different pins must be decided simul-
taneously to avoid DRC conflicts between them.

2.2 Instance Patterns
Similar to [8], we group the cell instances into instance patterns to
avoid redundant analysis on instances with the same pattern. Two
instances share the same pattern if they have the same master cell
type, orientation, and track offset (the distance from the first in-cell
track to the left boundary of the instance). For example, the instance
in Figure 2a is considered of the same pattern as the rightmost
instance in Figure 1, but the instances in Figure 2b and Figure 2c
are not, due to different orientation and track offset respectively.

2.3 Design Rule Check
In this work, we mainly consider four types of DRC violations
described in the ISPD 2018 detailed routing contest, namely metal
short, parallel run length (PRL) spacing, end-of-line (EOL) spacing,
and cut spacing [12]. In pin access, DRC violations mainly come
from two sources, (a) violations between a routed segment (wires
or vias) and a fixed metal, and (b) violations between different
routed segments. Figure 3a shows a PRL spacing violation between
a routed via and a different pin’s metal on M1. Figure 3b shows
another PRL spacing violation between a routed via and the metal
of the pin it attempts to access. Figure 3c, on the other hand, shows
an EOL spacing violation between two routed via’s metals on M2.

(a)

(b)

Track on M1 Track on M2 Pin metal on M1

Via metal on M1 Via metal on M2

Figure 1: An Example Pin Access Problem.

(a) (b) (c)

Track on M1 Track on M2 Pin metal on M1First vertical track

Figure 2: Instance Patterns. (a) An instance of the same in-
stance pattern as the rightmost instance in Figure 1a. (b) An
instance of a different instance pattern due to different ori-
entation. (c) An instance of a different instance pattern due
to different track offset.

(a) (b) (c) (d)

Via metal on M1 Via metal on M2Pin metal on M1 DRC violation

Figure 3: Design Rule Check. (a) A PRL spacing violation
between a routed via’s metal and the fixed metal of a differ-
ent pin. (b) A PRL spacing violation between a routed via’s
metal and the metal of the pin it attempts to access. (c) DRC
violations between two routed vias’ metals. (d) The maximal
rectangles decomposed from fig. 3a.

Moreover, almost all the design rules should be checked among
maximal rectangles, i.e., the unique rectangles within a metal poly-
gon, the width and height of which can not be expanded anymore.

FastPass: Fast Pin Access Analysis with
Incremental SAT Solving ISPD ’23, March 26–29, 2023, Virtual Event, USA

Generate Routes for Each Pin

Filter Routes with Violations

Identify Intra-Instance Conflicts

Filter Routes with Violations

Identify Inter-Instance Conflicts

SAT Solving with Preferred Routes

DRC-Clean PA Scheme

SAT Extend Preferred Route Candidates

Inter-Instance
Analysis

Pattern-Based
Analysis

Incremental
SAT Solving

yes

no

Figure 4: Overall Flow.

For example, the upper pin metal along with the via metal in Fig-
ure 3a can be decomposed into three maximal rectangles as in
Figure 3d. The lower pin metal is a maximal rectangle itself. We
call the maximal rectangles with black outline in Figure 3d fixed
rectangles, as they are solely from fixed metals. We call the max-
imal rectangle with a blue outline a routed rectangle, as it is a
newly formed maximal rectangle including some routed segments.
Extracting the maximal rectangles of metal polygons is necessary
because the calculation of the spacing needed for many design rules
rely on the characteristics of the maximal rectangles, e.g., maximal
width and maximal parallel run.

3 METHODOLOGY
3.1 Overview
The overall flow of the proposed algorithm is illustrated in Figure 4.
To begin with, a pattern-based analysis is performed. For each
instance pattern, a bunch of candidate routes is generated for each
pin. A route for a pin connects the pin to a nearby grid point by
a via and possibly a few wires. The candidate routes are filtered
for the first time in pattern-based analysis to remove the routes
that will cause DRC violations with the fixed metals inside the cell
instance. The conflicts between routes for different pins in the same
cell instance are identified to form an intra-instance conflict graph.

For inter-instance analysis, the candidate routes are filtered again
to remove the routes that will cause DRC violations with the fixed
metals in neighboring instances. The conflicts between routes in
different cells are identified to form an inter-instance conflict graph.

Lastly, incremental SAT solving will be used to find an optimized
DRC-clean pin access scheme. Each route for a pin is assigned a
cost according to how likely it will bring more difficulty to detailed
routing. To prioritize the preferred routes, only the route with
the lowest cost for each pin is enabled at the beginning. If no
solution can be found, the preferred candidate routes are extended
progressively until a solution is found.

3.2 Instance Pattern-Based Analysis

(a) (b) (c)

Track on M1 Track on M2 Via metal on M1

Via metal on M2

Pin metal on M1

Candidate grid point Wire on M1 Wire on M2

Figure 5: Candidate Routes Generation. (a) Pin access grid
points. (b) Pin access route with an on-grid via. (c) Pin access
route with an off-grid via.

3.2.1 Candidate Routes Generation. To analyze a unique instance
pattern, we first find a set of access grid points on M2 for each
pin. For each maximal rectangle of a pin shape, we include all the
grid points it contains into the set 𝐺𝑃 . If it does not contain any
grid point, we will include the grid points nearest to the rectangle
into 𝐺𝑃 . For instance, four grid points are found for the pin shape
having two maximal rectangles in Figure 5a.

After that, we generate two kinds of routes for each grid point
(𝑎𝑝 ∈ 𝐺𝑃) using each via type. Note that we will only consider the
via types whose metal on M2 shares the same direction of the tracks
on M2. For the first kind of routes, we use a via to connect a grid
point on M2 to M1 and then use two short wire segments on M1 to
connect the center of the via to the nearest pin metal as shown in
Figure 5b. The wire segments can be saved if the center of the via
is already inside the pin metal. For the second kind of routes, we
use wires on M2 to route from the grid point to a position over the
pin metal so that a via can be dropped there and the M1 metal of
the via is completely inside the pin metal as shown in Figure 5c.

In general, the first kind of routes is preferred as it uses the
minimum routing resources on M2, but some pins are simply not
accessible using the first kind, especially when the layout on M1 is
too compact.

After generating the candidate routes, we examine all the routes
in an instance pattern together to filter those having DRC viola-
tions with the fixed metals. To perform this violation checking,
we will have to decompose all fixed metals and routed metals into
maximal rectangles as discussed in Section 2.3. For brevity, we use
rectangle to refer to maximal rectangle in the following paragraphs.
A common approach to check DRC violations related to a rectangle
𝑟 is to search for all the other rectangles within a certain distance
from 𝑟 using R-tree [6]. However, R-tree can be very slow when the
number of rectangles increases and similar queries are conducted
multiple times. Thus we adopt a completely different approach to
check DRC violations.

Our algorithm utilizes a fact that the cell instances have a limited
height, and a routed rectangle will cause violations with only a
few fixed rectangles within a small distance in the 𝑥 direction
(horizontal) as the yellow region illustrated in Figure 6a. We call
such a region the active region of a rectangle. The width of an active
region can be calculated with the width of the rectangle and the
maximum spacing requirement.

ISPD ’23, March 26–29, 2023, Virtual Event, USA Fangzhou Wang, Jinwei Liu, and Evangeline F. Y. Young

(a) Intra-instance active region

(b) Inter-instance active region

Via metal on M1 Active region

Track on M1 Track on M2 Pin metal on M1

Figure 6: Intra-Instance and Inter-Instance Design Rule
Checking. A routed rectangle will cause violations with only
a few fixed rectangles within the active region.

Algorithm 1 Intra-Instance DRC Violation Check
1: Sort all routed rectangles in non-decreasing order of 𝑥 : 𝑟1, 𝑟2, ... 𝑟𝑛 .
2: Sort all fixed rectangles in non-decreasing order of 𝑥 : 𝑅1, 𝑅2, ... 𝑅𝑁 .
3: 𝐴← ∅, 𝑗 ← 1
4: for 𝑖 = 1, 2, ..., 𝑛 do
5: Shift the active region for routed rectangle 𝑟𝑖
6: while 𝑅 𝑗 has overlap with the active region do
7: 𝐴← 𝐴 + {𝑅 𝑗 }
8: 𝑗 ← 𝑗 + 1
9: for each fixed rectangle 𝑅′ ∈ 𝐴 do
10: if 𝑅′ falls to the left of the active region then
11: 𝐴← 𝐴 − {𝑅′ }
12: else
13: Check violations between 𝑟𝑖 and 𝑅′

With this fact, we check the DRC violations for all routes to-
gether by a sweep-line algorithm. The algorithm for checking the
DRC violations between the routed rectangles and the fixed rect-
angles can be described as in Algorithm 1. We first sort the routed
rectangles and fixed rectangles in non-decreasing order of their 𝑥
coordinates respectively. We will then initialize the active set, i.e.
the set of fixed rectangles within the active region, as an empty set
(𝐴← ∅). The active region is initially outside the left boundary of
the instance at the beginning. For each routed rectangle from left to
right, we will shift the left and right boundary of the active region.
The active set is updated by adding the fixed rectangles entering
from the right and removing those leaving to the left of the active
region. For each routed rectangle, we will only check it with the
fixed rectangles within the corresponding active region. The routes
having a rectangle with DRC violations will be filtered.

Assume that the number of fixed rectangles is 𝑁 , the number of
routed rectangles is 𝑛 and the maximum number of routed rectan-
gles in the active region does not exceed𝑚, the time complexity of
the above algorithm excluding the sorting step will be 𝑂 (𝑁 + 𝑛𝑚).
𝑂 (𝑁) time is needed to include and remove each fixed rectangle
from the active set once, and𝑂 (𝑛𝑚) time is for checking violations
between each routed rectangle and the fixed rectangles in the cor-
responding active set. Note that 𝑁 , 𝑛, and𝑚 are all small in a single
cell instance, thus Algorithm 1 can be performed very efficiently.

3.2.2 Intra-Instance Conflict Graph. After filtering the routes hav-
ing violations with the fixed metals, the conflicts (violations) be-
tween routes for different pins in the same instance will also be
checked to build an intra-instance conflict graph. Similar to violation
checking with fixed metals, a routed rectangle only needs to be
checked with routed rectangles of other pins within the active re-
gion. The checking algorithm is similar to Algorithm 1, except that
the active set will be used to maintain other routed rectangles in
the active region instead of fixed rectangles. After the checking, an
intra-instance conflict graph can be constructed. In the graph, each
route is a vertex, and there will be an edge between two routes if
they are from different pins and cannot be selected simultaneously.

3.3 Inter-Instance Analysis and Complete
Conflict Graph

After instance pattern-based analysis, we get a bunch of routes and
an intra-instance conflict graph for each cell instance. These routes
will all be compatible with the fixed metals of the cell instance
they belong to, and the intra-instance conflict graphs will tell the
compatibility between routes in the same instance. Nonetheless, a
route near the left or right boundary of an instance still has a chance
to conflict with a fixed metal or another route in a neighboring
instance, like the situation in Figure 6b. Fortunately, similar to intra-
instance violation checking, the routes near the boundary of an
instance only need to be checked with the fixed metals and routes
within a small active region (as colored yellow in Figure 6b) near
the boundary of its neighboring instance. All routes near the left or
right boundary of an instance are checked in this way to filter those
incompatible with the fixed metals in the neighboring instance, and
edges will be added to the inter-instance conflict graph.

For better illustration, a toy example is given in Figure 7. The
conflict graph involving real standard cells can be much more com-
plicated than that. Figure 7a shows three cell instances of the same
instance pattern in a row. After instance pattern-based analysis,
we get six routes, each of which has a single via as shown in Fig-
ure 7b, and an intra-instance conflict graph as shown in Figure 7d.
We use 𝑡𝑋,𝑖 to denote the 𝑖𝑡ℎ route for pin 𝑋 . After inter-instance
analysis, suppose none of the existing routes are filtered, we will
get the complete conflict graph shown in Figure 7c after adding the
inter-instance edges in red color (𝑡 𝑗

𝑋,𝑖
denotes the 𝑖𝑡ℎ route for pin

𝑋 of the 𝑗𝑡ℎ instance).

3.4 Route Selection by Incremental SAT Solving
With DRC-clean candidate routes and the complete conflict graph,
we propose an incremental SAT-based approach for route selection,

FastPass: Fast Pin Access Analysis with
Incremental SAT Solving ISPD ’23, March 26–29, 2023, Virtual Event, USA

(a) (b)

(c) (d)

Track on M1 Track on M2 Single via routePin metal on M1

Intra-instance conflict Inter-instance conflict

Figure 7: Conflict Graph. (a) Three identical cell instances
in a row. (b) Possible routes for the pins in the instance. (c)
Complete conflict graph. (d) Intra-instance conflict graph.

such that each net pin is assigned one route to form an optimal or
close to optimal pin access scheme without any inter-route conflict.

3.4.1 Division into Independent Subproblems. It is observed that
the route selection problem for the whole design can be divided into
many independent subproblems, each of which covers only a small
set of pins and can be quickly solved. We perform depth-first search
(DFS) on the conflict graph to identify all the connected components
and treat each of them as a single problem instance. To avoid cases
where a pin’s candidate routes appear in multiple subproblems,
we add edges between routes from the same pin during DFS. The
originally large problem can thus be solved efficiently. In the rest
of this section, we focus on one subproblem for clarity.

3.4.2 Problem Definition with Notations. Consider the set of pins
𝑃 , we denote 𝑇𝑖 as the set of candidate routes for pin 𝑝𝑖 and let
𝑡𝑖, 𝑗 ∈ 𝑇𝑖 be the 𝑗𝑡ℎ candidate route of pin 𝑝𝑖 . With the conflict
graph 𝐺 = (𝑉 , 𝐸), a bijection (one-to-one mapping) exists between
the set of routes and the set of vertices𝑉 . With an abuse of notation,
for a route 𝑡𝑖, 𝑗 , we denote its corresponding vertex in 𝑉 as 𝑡𝑖, 𝑗 , too.

To indicate our preference on different routes, each route 𝑡𝑖, 𝑗 has
a cost tuple 𝑐𝑜𝑠𝑡 (𝑡𝑖, 𝑗) = ⟨𝑐1, 𝑐2⟩, which will be calculated as follows.

𝑐1 =

{
1, if 𝑎𝑝 (𝑡𝑖, 𝑗) is out-of-guide,
0, otherwise,

(1)

𝑐2 = 𝐿1𝐷𝑖𝑠𝑡
(
𝑎𝑝 (𝑡𝑖, 𝑗), 𝑛𝑒𝑡 (𝑝𝑖) .𝑐𝑒𝑛𝑡𝑒𝑟

)
, (2)

where 𝑎𝑝 (𝑡𝑖, 𝑗) means the access grid point of route 𝑡𝑖, 𝑗 and 𝑛𝑒𝑡 (𝑝𝑖)
represents the net towhich pin 𝑝𝑖 belongs. Note that the global route
guides are a set of regions in which detailed routing is preferred.
Therefore, by having 𝑐1, we first consider routes whose grid points
lie in guides. With the term 𝑐2, we prefer to have routes that are
closer to the bounding box center of the net, which can lead to a
shorter total half-perimeter wire length (HWPL).

We assume that in each 𝑇𝑖 , routes have been sorted in lexico-
graphic order (e.g., ⟨0, 500⟩ < ⟨0, 1000⟩ < ⟨1, 200⟩). In the route
selection problem, we want to select a set of routes 𝐴𝑆 , such that

(1) for each pin 𝑝𝑖 ∈ 𝑃 , there must be a route 𝑡𝑖,𝑘 ∈ 𝐴𝑆 ;
(2) for all 𝑡𝑖1, 𝑗1 ≠ 𝑡𝑖2, 𝑗2 ∈ 𝐴𝑆 , we require that the two routes do

not conflict with each other, i.e., (𝑡𝑖1, 𝑗1 , 𝑡𝑖2, 𝑗2) ∉ 𝐸;
(3) we want to use preferred routes (i.e., the first few candidates)

as much as possible.

3.4.3 Boolean Formulation for Route Selection. For this problem,
we propose a neat Boolean formula F with two types of constraints,

F ≡ P ∧ C. (3)

In the above equation, P enforces that at least one route should be
chosen for each pin. C encodes from the conflict graph that two
incompatible routes cannot be both selected at the same time. With
a set of Boolean variables 𝑆 , where 𝑠𝑖, 𝑗 ∈ 𝑆 is asserted true if route
𝑡𝑖, 𝑗 is selected, constraints P and C are formulated as follows.

P ≡
∧
𝑝𝑖 ∈𝑃

∨
𝑡𝑖,𝑗 ∈𝑇𝑖

𝑠𝑖, 𝑗 , (4)

C ≡
∧

(𝑡𝑖1, 𝑗1 ,𝑡𝑖2, 𝑗2) ∈𝐸
(¬ 𝑠𝑖1, 𝑗1 ∨ ¬ 𝑠𝑖2, 𝑗2) . (5)

By feeding F into an SAT solver, we can easily get a solu-
tion which corresponds to a DRC-clean and conflict-free pin ac-
cess scheme if there exists one. Moreover, in case multiple access
schemes are needed for better detailed routability, we can simply
add the negation of the current variable assignment to F as a new
clause and conduct SAT solving again to get a different solution.

However, as an SAT solver does not consider any optimization
goal, the resulting pin access scheme may contain a large number of
access grid points that are out-of-guide or relatively far away from
the centers of nets, which is undesirable for detailed routing. To
address this problem, we propose an incremental SAT solving flow,
which can produce a solution that is optimal or close to optimal.

3.4.4 Incremental SAT Solving. Introduced inMinisat [4], incremen-
tal SAT solving with assumptions allows us to pass a set of assump-
tions (in the form of unit clauses) that holds for a single invocation
of the SAT solver. With this feature, users can (i) enable/disable
certain clauses or (ii) pre-assign some variables according to the
needs [13]. As a result, incremental SAT solving can be much more
powerful than general SAT solving.

When the solver is called under assumptions, it either (i) re-
ports satisfiable (SAT) and produces a solution that satisfies all
the assumptions or (ii) reports unsatisfiable (UNSAT). In the latter
situation, the solver will return a subset of assumptions that are
sufficient to make the current invocation UNSAT [5], which can be
used to build new assumptions for the next incremental run.

3.4.5 Incremental SAT Flow for Route Selection. Consider Equa-
tion (3), the SAT solver has a good chance of picking less preferred
routes because such assignments exist in the search space. With
assumptions, we can manually adjust the search space of an SAT
problem instance. For example, by having the assumption ¬𝑠𝑖, 𝑗 , we
can eliminate feasible solutions where 𝑠𝑖, 𝑗 is assigned 1. The usage
of route 𝑡𝑖, 𝑗 is thus disabled.

ISPD ’23, March 26–29, 2023, Virtual Event, USA Fangzhou Wang, Jinwei Liu, and Evangeline F. Y. Young

Table 1: Benchmark and Runtime Statistics

Benchmarks Tech
(nm)

Cell
Instances

Instance
Patterns # Pins # Candidate

Routes
Conflict
Edges

TOP
Time (s)

FastPass
Time (s) Speedup

ispd18_test1 45 8,879 182 17,202 90,601 4,928 6.3 0.2 38.3×
ispd18_test2 45 35,913 222 158,741 788,660 44,399 10.6 1.0 10.7×
ispd18_test3 45 35,973 227 159,579 798,128 44,348 13.6 1.0 14.1×
ispd18_test4 32 72,094 2,725 318,121 4,258,475 106,053 117.7 5.4 21.8×
ispd18_test5 32 71,954 2,733 318,059 3,492,551 7,554,606 125.7 7.6 16.6×
ispd18_test6 32 107,919 2,886 475,429 5,140,864 11,072,916 146.2 10.2 14.3×
ispd18_test7 32 179,865 148 793,129 8,442,950 16,884,133 98.3 12.1 8.1×
ispd18_test8 32 191,987 150 793,129 8,443,220 16,902,913 115.4 12.6 9.1×
ispd18_test9 32 192,911 136 791,761 8,416,299 16,907,027 72.9 12.5 5.9×
ispd18_test10 32 290,386 144 811,761 8,625,282 17,393,590 106.0 13.7 7.7×

Avg. - - - - - - 81.3 7.6 14.7×

As shown in Figure 4, we propose the following incremental SAT
solving approach, which can be considered as an iterative process in
which we dynamically adjust the search space of an SAT problem.

(1) We start the SAT solving with only the best route enabled
for each pin (by using assumptions to disable other routes).

(2) If the solver reports SAT, we can stop the process and convert
the assignment to an optimized pin access scheme.

(3) Otherwise, there must be some insolvable conflicts between
the routes in the current search space. Therefore, we will
find a set of pins 𝑃 ′ that need to be extended based on the
returned assumptions and enable one more candidate route
for each pin in 𝑃 ′. In this way, we increase the chance to
get a feasible solution in the next incremental run while
introducing as few suboptimal routes as possible.

Note that if the solver reports UNSAT when no assumptions are
passed to the solver (i.e., no routes are disabled), we can conclude
that no feasible solutions exist for the route selection problem.

Compared with normal SAT solving, the proposed incremental
flow can lead to several incremental runs of an SAT solver, each of
which has a relatively small search space. Therefore, in practice, the
latter one will not be slower though the SAT solver can be invoked
several times. Most importantly, by gradually enlarging the search
space, we can finally get an optimal or close to optimal solution with
an SAT solver only, instead of resorting to more time-consuming
methods like MAX-SAT or integer linear programming.

4 EXPERIMENTAL RESULTS
We implement FastPass in C++ language, and MiniSat 2.2 [4] is
used for SAT solving. All the experiments are conducted on a Linux
server with a 2.90 GHz Intel Xeon CPU. To demonstrate the ef-
fectiveness and scalability of our proposed PAAF, we conduct a
series of experiments on the ISPD 2018 benchmark suite [12], which
contains realistic industrial designs with up to 290K standard cell
instances and 182K nets. The statistics of the benchmarks can be
found in Table 1. The same table also shows the statistics of the
conflict graph for each design constructed by FastPass. For most
designs, FastPass generates around ten candidate routes for each

pin on average, and the number of conflict edges found is about
two times the number of candidate routes.

4.1 Comparison with TOP
We first compare our framework with the known best PAAF -
TOP1 [8]. As both frameworks can be easily parallelized, a single
thread is used in this experiment for a fair comparison. Quantitative
results are shown on the right-hand side of Table 1. Both TOP and
FastPass can achieve DRC-clean pin access schemes with no failed
pins. Moreover, it can be observed that our proposed framework is
on average 14.7× faster than TOP, which shows that FastPass can be
highly preferred in scenarios where placement changes frequently
and pin access analysis needs to be called repeatedly.

4.2 Runtime Decomposition
Both the runtime of TOP and FastPass can be roughly divided into
two parts - preparation time and solving time. For preparation,
the unique instance patterns are analyzed, and DRC-clean access
points and routes are generated. For solving, a DRC-clean pin ac-
cess scheme is generated by DP in TOP and by incremental SAT in
FastPass. The actual runtime decomposition of the two algorithms
is shown in Figure 8. It is shown that our preparation with sweep-
line design rule checking is much faster than TOP for most cases.
Though SAT-based methods are usually considered slower, our
solving is extremely fast due to the fact that most of the indepen-
dent subproblems are relatively small. Besides, since our pin access
scheme is correct by construction, no additional DRC checking is
required compared to the DP-based algorithm in TOP.

4.3 Effectiveness of Incremental SAT Solving
As discussed in Section 3.4, we can resort to incremental SAT solving
to optimize the quality of the pin access scheme, rather than merely
select a legal route for each pin. In this work, we use two metrics
to evaluate the quality of a pin access scheme - the number of out-
of-guide access grid points (OFG) and the total half-perimeter wire
length (HPWL) of the nets. Since detailed routers often prioritize
path searching within the route guides, too many OFGs are likely
to prolong the path searching process and even worsen the routing
1The source code is available at https://github.com/ABKGroup/TritonRoute-WXL.

https://github.com/ABKGroup/TritonRoute-WXL

FastPass: Fast Pin Access Analysis with
Incremental SAT Solving ISPD ’23, March 26–29, 2023, Virtual Event, USA

Table 2: Route Selection Results with/without Incremental SAT Solving.

Benchmarks TOP SAT-Unsorted SAT-Sorted Incremental SAT
OFG * HPWL # OFG * HPWL # OFG * HPWL # OFG * HPWL

ispd18_test1 860 62,754 860 62,772 33 61,532 8 61,507
ispd18_test2 7,188 1,338,360 8,888 1,338,622 1,010 1,322,727 688 1,322,142
ispd18_test3 6,992 1,457,780 7,606 1,458,023 1,595 1,442,733 1,092 1,442,262
ispd18_test4 50,207 2,158,830 38,004 2,158,717 2,132 2,124,095 1,810 2,123,646
ispd18_test5 46,445 2,164,850 46,148 2,164,636 3,389 2,132,656 2,093 2,131,595
ispd18_test6 73,750 2,942,230 73,964 2,942,051 5,422 2,894,805 3,483 2,893,202
ispd18_test7 107,177 5,054,720 97,597 5,054,326 2,806 4,970,566 1,444 4,968,595
ispd18_test8 108,038 5,076,690 98,554 5,076,310 2,874 4,992,606 1,434 4,990,678
ispd18_test9 130,448 4,495,240 122,556 4,494,891 4,088 4,411,584 2,637 4,409,740
ispd18_test10 136,333 5,621,630 127,737 5,621,370 4,433 5,537,226 2,785 5,535,221
geomean ratio 32.386 1.016 31.433 1.016 1.739 1.000 1.000 1.000

* OFG: Out-of-guide access grid points. The unit for HPWL is µm.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Benchmark (ispd18 test{})

R
u
n
ti
m
e(
s)

TOP Prep.
TOP Solve

FastPass Prep.
FastPass Solve

Figure 8: Runtime decomposition of TOP and FastPass.

quality. The total HPWL, on the other hand, determines the lower
bound of the total wire length, and thus could be optimized as well.

In Table 2, we compare the quality of the pin access scheme
found by TOP and FastPass. For FastPass, we compare three differ-
ent strategies. For the first strategy (SAT-Unsorted), we will feed the
candidate routes into the SAT solver without sorting them before-
hand. With this strategy, FastPass generates pin access schemes of
similar quality with respect to the number of OFGs and total HPWL.
For the second strategy (SAT-Sorted), we will sort the candidate
routes in increasing order of their costs as discussed in Section 3.4.2.
Since the SAT solver tends to select the option it is first given, sort-
ing beforehand helps to reduce the number of OFGs by around
94.5% and reduce the total HPWL by around 1.6%. For the last strat-
egy, we will use incremental SAT for route selection. Experimental
results show that it further reduces the number of OFGs by around
42.5% compared to SAT-Sorted.

4.4 Supporting Advanced Technology Nodes
To verify the effectiveness of our approach on advanced tech-
nology nodes, we synthesize an open-source processor IP core
mor1kx [1] (80K instances, 515 instance patterns) with the ASAP

Track on M1

Track on M2

Pin metal on M1

Single via route

Figure 9: Pin access result for an AOI221 cell inmor1kx [1].

7nm library [2]. With simple adaptation2, it takes FastPass 4.1 sec-
onds to generate DRC-clean pin access result. Figure 9 shows the
pin access scheme for an AOI221 cell from mor1kx.

5 CONCLUSIONS
In this paper, we present FastPass, a highly efficient pin access
analysis framework, including a sweep-line style algorithm for effi-
ciently design rule checking, an incremental SAT-based algorithm
for correct-by-construction route selection. Experimental results
show that FastPass can produce DRC-clean pin access schemes
for all benchmarks in the ISPD 2018 detailed routing contest, with
merely 6.8% the running time of the state-of-the-art approach.

In the future, we plan to integrate FastPass into a detailed router
to further validate its effectiveness. Besides, we will also support
more complex design rules in the ISPD 2019 benchmark suite [11].
It will be interesting to model design rules that involve more than
two objects with a variation of our current approach.

ACKNOWLEDGMENTS
The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CUHK 14209320).

2Necessary modifications are made to FastPass to deal with different design rules in
the advanced technology node. For example, we add the design rule check for the
end-of-line keepout spacing rule and rule out all routes with off-grid routing segments.

ISPD ’23, March 26–29, 2023, Virtual Event, USA Fangzhou Wang, Jinwei Liu, and Evangeline F. Y. Young

REFERENCES
[1] [n.d.]. mor1kx - an OpenRISC processor IP core. https://github.com/openrisc/

mor1kx.
[2] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh

Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. 2016. ASAP7:
A 7-nm finFET predictive process design kit. Microelectronics Journal 53 (2016),
105–115.

[3] Yixiao Ding, Chris Chu, and Wai-Kei Mak. 2017. Pin accessibility-driven detailed
placement refinement. In Proceedings of the 2017 ACM on International Symposium
on Physical Design. 133–140.

[4] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. Springer, 502–518.

[5] Henri Fraisse and Dinesh Gaitonde. 2018. A SAT-based timing driven place
and route flow for critical soft IP. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 8–87.

[6] Antonin Guttman. [n.d.]. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, 1984. 47–57.

[7] Andrew B Kahng, Jian Kuang, Wen-Hao Liu, and Bangqi Xu. 2021. In-Route Pin
Access-Driven Placement Refinement for Improved Detailed Routing Conver-
gence. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 3 (2021), 784–788.

[8] Andrew B Kahng, Lutong Wang, and Bangqi Xu. 2020. The tao of PAO: Anatomy
of a pin access oracle for detailed routing. In 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC). IEEE, 1–6.

[9] Andrew B Kahng, Lutong Wang, and Bangqi Xu. 2021. TritonRoute-WXL:
The Open-Source Router With Integrated DRC Engine. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 41, 4 (2021), 1076–1089.

[10] Haocheng Li, Gengjie Chen, Bentian Jiang, Jingsong Chen, and Evangeline FY
Young. 2019. Dr. CU 2.0: A scalable detailed routing framework with correct-by-
construction design rule satisfaction. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1–7.

[11] Wen-Hao Liu, Stefanus Mantik, Wing-Kai Chow, Yixiao Ding, Amin Farshidi, and
Gracieli Posser. 2019. ISPD 2019 initial detailed routing contest and benchmark
with advanced routing rules. In Proceedings of the 2019 International Symposium
on Physical Design. 147–151.

[12] Stefanus Mantik, Gracieli Posser, Wing-Kai Chow, Yixiao Ding, andWen-Hao Liu.
2018. ISPD 2018 initial detailed routing contest and benchmarks. In Proceedings
of the 2018 International Symposium on Physical Design. 140–143.

[13] Alexander Nadel and Vadim Ryvchin. 2012. Efficient SAT solving under as-
sumptions. In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 242–255.

[14] Tim Nieberg. 2011. Gridless pin access in detailed routing. In 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 170–175.

[15] Muhammet Mustafa Ozdal. 2009. Detailed-routing algorithms for dense pin
clusters in integrated circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 28, 3 (2009), 340–349.

[16] Xiaoqing Xu, Bei Yu, Jhih-Rong Gao, Che-Lun Hsu, and David Z Pan. 2016. PARR:
Pin-access planning and regular routing for self-aligned double patterning. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 21, 3 (2016),
1–21.

https://github.com/openrisc/mor1kx
https://github.com/openrisc/mor1kx

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Instance Patterns
	2.3 Design Rule Check

	3 Methodology
	3.1 Overview
	3.2 Instance Pattern-Based Analysis
	3.3 Inter-Instance Analysis and Complete Conflict Graph
	3.4 Route Selection by Incremental SAT Solving

	4 Experimental Results
	4.1 Comparison with TOP
	4.2 Runtime Decomposition
	4.3 Effectiveness of Incremental SAT Solving
	4.4 Supporting Advanced Technology Nodes

	5 Conclusions
	Acknowledgments
	References

