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ABSTRACT
Due to cost benefits, supply chains of integrated circuits (ICs) are
largely outsourced nowadays. However, passing ICs through var-
ious third-party providers gives rise to many threats, like piracy
of IC intellectual property or insertion of hardware Trojans, i.e.,
malicious circuit modifications.

In this work, we proactively and systematically harden the phys-
ical layouts of ICs against post-design insertion of Trojans. Toward
that end, we propose a multiplexer-based logic-locking scheme that
is (i) devised for layout-level Trojan prevention, (ii) resilient against
state-of-the-art, oracle-less machine learning attacks, and (iii) fully
integrated into a tailored, yet generic, commercial-grade design
flow. Our work provides in-depth security and layout analysis on a
challenging benchmark suite. We show that ours can render lay-
outs resilient, with reasonable overheads, against Trojan insertion
in general and also against second-order attacks (i.e., adversaries
seeking to bypass the locking defense in an oracle-less setting).

We release our layout artifacts for independent verification [29]
and we will release our methodology’s source code.

KEYWORDS
Hardware Trojans, physical design, security closure, logic locking,
ISPD’22 contest

1 INTRODUCTION
In this work, we focus on the threat of hardware Trojans, i.e., mali-
cious circuit modifications. By design, Trojans are only minor in
extent but severe in fallout [9, 31, 32]. Many Trojan countermea-
sures have been proposed over the years (see also Sec. 2.1.2 and 3).
Aside from (i) reactive, post-silicon monitoring and (ii) pre-/post-
silicon verification, testing, detection, and inspection, we argue that
(iii) proactive, pre-silicon prevention is essential to hinder Trojans
to begin with. However, most related prior art falls short in terms
of resilience against advanced attacks and/or overheads.

The objective of this work is security closure against hardware
Trojans. Note that security closure is an emerging paradigm to
proactively harden the physical layouts of integrated circuits (ICs)
at design-time against various threats that are executed post-design
time [17, 18]. In this work, we aim for proactive, pre-silicon Trojan
prevention, by carefully and systematically hardening the physical
layout of ICs as a whole against post-design Trojan insertion.
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Toward that end, and more so for Trojan defense in general, we
have identified the following research challenges:

• Robustness – Any defense must remain robust in place. That
is, a foundry-based adversary, being fully aware that some
Trojan defense is put in place, would naturally want to first
circumvent that defense (i.e., stealthily remove, override, or
otherwise render useless) before inserting their Trojan. Such
second-order attacks represent a key challenge where prior
art, be they proactive or reactive defenses, falls short.
• Effectiveness – Any defense should be able to protect against
various Trojans. This is especially true for proactive, pre-
silicon schemes which have only “one shot” at design-time.
Layouts should be protected as a whole, i.e., in terms of
(i) layout resources that are exploited for Trojan insertion
(e.g., open placement sites, free routing tracks, available tim-
ing slacks) and (ii) structure and functionality, analysed by
adversaries for targeted Trojan insertion.
• Efficiency – Any defense should incur limited, controllable
overheads. Taking control over such trade-offs requires two
parts: (i) metrics for security and overheads, and (ii) some
integrated, secure-by-design methodology, utilizing the met-
rics and user guidance as needed.

Accordingly, our work makes the following contributions:

(1) Layout-level logic locking –We propose amultiplexer (MUX)-
based locking scheme, called TroMUX, devised to hinder post-
design Trojan insertion. Our locking scheme addresses the
above challenges through the following capabilities:

(a) Robustness – TroMUX is devised to withstand state-of-
the-art, machine learning (ML)-based attacks on locking,
like SCOPE [1] andMuxLink [2]. This is essential to hinder
adversaries from circumventing the Trojan defense.

(b) Effectiveness – By the security promise of locking, attack-
ers cannot easily insert targeted Trojans anymore, i.e.,
Trojans that require understanding of the original design.
Furthermore, by densely filling up the layout with as many
TroMUX instances as practically possible (keeping the
design quality well under control), attackers cannot easily
insert additional Trojan logic in general anymore.

(2) Integrated security closure – We propose an effective and ef-
ficient methodology for security closure against post-design
Trojan insertion. The methodology is fully integrated into
a commercial-grade physical-synthesis flow. Such integra-
tion is essential to achieve (i) the above outlined security
principles and (ii) take control of security-versus-overheads
trade-offs arising for security closure of layouts.
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Release: We will release our source codes. We release our ar-
tifacts of secured layouts already during pre-publication [29], to
enable independent verification of our work.

2 BACKGROUND AND MOTIVATION
2.1 Trojans
2.1.1 Working Principles. Trojans are malicious hardware modifi-
cations [9, 31]. This notion is very diverse, covering modifications
that: (i) leak information from an IC, reduce its performance, or dis-
rupt its working altogether; (ii) are always on, triggered internally,
or triggered externally; (iii) are introduced through untrustworthy
third-party intellectual property (IP), adversarial designers, during
outsourced mask generation, manufacturing, packaging of ICs; etc.

Most if not all Trojans comprise a trigger and a payload; the
trigger activates the payload on some attack condition, and the
payload serves to perform an actual attack. Triggers are often based
on low-controllability nets (LCNs)—to complicate their detection
during testing—whereas payloads are targeting on sensitive assets
like key registers. Note that trigger and payload are implemented in-
dividually but are working together in tandem. Also note that most
Trojans require some layout-level resources like open placement
sites, free routing tracks, and/or available timing slacks.

2.1.2 Prior Art for Countermeasures. Prior art for Trojan counter-
measures can be classified into:
• Proactive detection schemes, that is pre-silicon verification
(e.g., [7, 9]), post-silicon testing (e.g., [8, 9]), or post-silicon
inspection (e.g., [25]);
• Proactive, pre-silicon prevention schemes (e.g., [4, 5, 10, 13,
17, 19, 22, 27, 30]);
• Reactive, post-silicon monitoring schemes (e.g., [11, 14, 26]).

Proactive detection and reactive monitoring schemes are generally
challenged by advanced and stealthy Trojans [12, 32]. Further, reac-
tive monitoring as well as proactive prevention schemes typically
require some dedicated hardware support—if not secured prop-
erly, the related circuitry may well be circumvented by adversaries
during the course of Trojan insertion.

Given these challenges, a robust scheme for proactive prevention
is essential to hinder Trojans early on, as best as possible.We discuss
prior art for proactive, pre-silicon prevention in more detail in Sec. 3.
A comparison of prior art and ours is also outlined in Table 1.

Finally, note that the three classes are orthogonal, yet gener-
ally compatible. To increase the overall resilience against Trojans,
techniques from all classes could (and should) be utilized jointly, if
permissible in terms of design overheads and cost.

2.2 Security Closure
As indicated, security closure is an emerging paradigm that seeks
to proactively harden the physical layouts of ICs, at design time,
against various threats that are executed post-design time [17, 18].
In the broader context of secure-by-design efforts for electronic
design automation (EDA) tools [15, 21, 23], security closure aims
for secure physical-synthesis stages.

Security closure against Trojans means to control physical syn-
thesis such that insertion of Trojans becomes impractical, while
at the same time managing the impact on design quality of such

Table 1: High-Level Comparison with Prior Art

Work Approach Robust Effective𝑎 Efficient Artifacts
Targ. / Untarg. Available

[10] Locking N [10, 22] N𝑎′ / N (Y) N

[19, 22] Locking (N)𝑏 (N)𝑎′ / N (Y) N

[27] Locking (?) (?)𝑎′ / N (Y) N

[4, 5, 30] Addit. Logic (?) N / (?)𝑎′ (Y) N

[13, 17] Phys. Synth. (N)𝑐 N / (N)𝑎′ Y N

Ours: Locking and Y Y / (Y) Y Y [29]TroMUX Layout Filling

Notation: Y – yes, N – no, (?) – unclear, (Y) – yes but some caveat, (N) – unlikely
𝑎Two scenarios are differentiated: effective against targeted Trojans / against untar-
geted Trojans. Robustness impacts effectiveness; related cases are labelled via 𝑎′.
𝑏 The employed locking scheme has been broken in [3].
𝑐We argue that such schemes can be reverted by adversaries.

measures [17, 18]. For example, an aggressively dense layout would
leave only few open placement sites and few routing resources
exploitable for Trojan insertion. While aggressively dense layouts
are already challenging by themselves, in terms of managing design
quality, such naive approach is still not good enough for security
closure. This is because, for one, an advanced Trojan like A2 [32]
may require only 20 placement sites for an advanced analog imple-
mentation [24];1 such very few sites are likely to remain even in
aggressively dense layouts. For another, imagine a second-order
attack where an adversary would first revise the layout as much
as necessary (but also as little as possible, to avoid subsequent
detection), and only then insert their Trojan.

In short, successful efforts for security closure against Trojans
need to holistically address the challenges outlined in Sec. 1.

2.3 Logic Locking
Logic locking, or locking for short, means to incorporate so-called
key-gate structures that are controlled by secret key-bits. While
locking is largely known for protection of IC’s IP, it can also serve
for Trojan defense. In fact, different such schemes have been pro-
posed: AND/OR locking [10], X(N)OR locking [19, 22], and custom
locking [27]. We discuss relevant prior art in more detail in Sec. 3.1.

Recently, ML-based attacks like SAIL [6], SCOPE [1], OMLA [3]
and MuxLink [2] succeeded in learning various design features and
subsequently predicting key-gates, all in an oracle-less setting,2
i.e., without need for a functional chip that can be queried for its
functional behaviour. For example,MuxLink learns on the structure
of regular, unlocked parts of the design at hand, using a graph rep-
resentation of the design, and then deciphers the MUX key-gates.
More specifically,MuxLink considers each MUX key-gate’s input at
a time, connecting it to the output of the MUX, thereby essentially
bypassing the key-gate, and contrasts the resulting different struc-
tures to the trained knowledge to predict the more likely structure.

1This is a remarkable exception—other Trojans reported in the literature, as well as a
digital version of A2 itself, require hundreds or thousands of sites [24].
2Only the oracle-less setting is relevant for our work as we are utilizing locking for
proactive, pre-silicon prevention of Trojans, not for IP protection against end-users.
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In short, ML-resilient locking schemes remain an open challenge,
but are essential for locking-based, proactive Trojan prevention.

3 PRIOR ART
3.1 Locking-Based Trojan Prevention
Dupuis et al. [10] lock LCNs using AND/OR key-gates, to hinder
insertion of Trojan triggers. They consider timing slacks, varying
toggling thresholds, and balanced switching probabilities. Samimi
et al. [22] follow similar principles as Dupuis et al., but utilize
X(N)OR key-gates. Marcelli et al. [19] propose a multi-objective
algorithm, seeking to minimize LCNs and maximize the efficacy
of X(N)OR locking at the same time. Šišejković et al. [27] secure
inter-module control signals against software-controlled hardware
Trojans, using encryption circuitry along with regular locking. For
the latter, they do not specify/limit the type of key-gates.

The above prior art has limitations as follows.

• Dupuis et al. [10] cannot protect against insertion of targeted
Trojans. This is because they utilize AND/OR key-gates to
tune the controllability of nets, not to obfuscate the design.
• Šišejković et al. [27] only protect against Trojans targeting
on inter-module control signals, not on modules’ internals.
• None consider Trojan prevention at the layout level; all are
working only at netlist level. This implies that none can
conclusively prevent insertion of Trojan logic into the layout.
• None explicitly prevent Trojan payloads. Šišejković et al. [27]
are using locking in general, without focus on triggers or
payloads, and others are locking only low-controllability
nets (to hinder insertion of Trojan triggers).
• None show robustness against ML-based attacks; all are
prone to second-order attacks bypassing the locking defense.
This is most evident for Dupuis et al. [10]: they employ
a direct, hard-coded correlation of key-bit ‘0’ to OR key-
gates, key-bit ‘1’ to AND key-gates, respectively, and do not
employ re-synthesis, which is essential for obfuscation of
that correlation, but would be challenging for their objective
of tuning the controllability of nets.

Note that, in contrast, our work addresses all these limitations.

3.2 Layout-Level Trojan Prevention
Xiao et al. [30] fill layouts with built-in self-test components, argu-
ing that tampering of those structures (by adversaries regaining
layout resources to insert their Trojans) is detected by post-silicon
testing. Similarly, Ba et al. [4, 5] fill layouts with additional circuitry.
Knechtel et al. [17] propose techniques for Trojan-resistant phys-
ical synthesis, based on locally increasing placement density (to
hinder Trojan insertion) and locally increasing routing density (to
hinder Trojan routing). Hossein-Talaee et al. [13] redistribute white
space/open sites otherwise exploitable for Trojan insertion.

The above prior art has limitations as follows.

• None protects against insertion of targeted Trojans. In the
absence of locking or other obfuscation schemes, the original
design is fully accessible by adversaries.
• None conclusively shows robustness against second-order
attacks, as in adversaries regaining layout resources despite

the defense put in place. For example, for the work in [13],
shifting of white spaces can be trivially reverted.
• For full efficacy, the work in [30] requires 100% test coverage
which can be difficult to achieve. Further, the methodology is
challenged by high utilization rates, limiting its practicability.
• For the work in [4, 5, 30], the number of additionally required
primary inputs scales with layout filling. This is impractical;
pads for primary inputs/outputs (PIs/POs) are large in actual
ICs and, if not employed wisely, can considerably increase
the chip outline, directly increasing cost for silicon area.

Note that, in contrast, our work addresses all these limitations.

4 THREAT MODELS
Trojans: We follow a classical threat model that is consistent with
the literature as follows.

(1) We assume adversaries reside within manufacturing facili-
ties, whereas the design process is considered trustworthy.

(2) From (1) follows that adversaries have no knowledge of the
original unprotected design, only of the protected physical
layout at hand.

(3) From (1) also follows that we do not account for Trojans in-
troduced by, e.g., malicious designers or third-party IP mod-
ules. Against such threats, and to increase a layout’s over-
all Trojan resilience, countermeasures orthogonal to ours,
namely proactive detection or reactive monitoring schemes
(Sec. 2.1.2), may be applied along with ours.

(4) We assume Trojans are implemented using regular standard
cells, not by modifying interconnects or transistors, etc.

(5) We assume targeted Trojans with triggers based on LCNs
and payloads targeting on assets, i.e., security-critical com-
ponents like key registers.

(6) The adversaries’ objective is to insert some Trojan(s), more
specifically trigger and payload components, into the layout.

Locking: First, recall that we employ locking not for IP protec-
tion, but to hinder Trojan insertion. Toward that end, we follow an
oracle-less threat model that is consistent with both the literature
and the above threat model on Trojans as follows.

(1) The adversaries’ objective is to circumvent the locking scheme,
to (a) understand the true functionality of the design, re-
quired for targeted Trojan insertion, and (b) to regain layout
resources, required for Trojan insertion in general.

(2) Given that adversaries are assumed to reside within man-
ufacturing facilities, only oracle-less attacks are applicable.
None of the well-known Boolean satisfiability-based attacks
are applicable. Neither applicable are oracle-less attacks on
locking schemes unlike TroMUX, e.g., [33].

(3) Following Kerckhoffs’ principle, all implementation details
for TroMUX locking are known to the adversaries; only the
key-bits remain undisclosed.

5 METHODOLOGY
This work is motivated by the need for a proactive, pre-silicon
Trojan-prevention scheme that is robust, effective, and efficient. As
discussed in Sec. 3, prior art falls short toward that end.
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Our approach—which can be summarized as locking and layout
filling applied in unison—aims to hinder first-order and second-
order Trojan-insertion attacks. We integrate an ML-resilient, MUX-
based locking scheme directly into the IC layouts. Unlike prior art,
we neither employ trivial filler/spare cells, nor separate circuitry,
nor vulnerable locking schemes. To protect IC layouts holistically,
our methodology carefully embeds, in a security-aware manner,
as many locking instances during physical instances as practically
possible, i.e., keeping the design quality well under control. Our
methodology is fully integrated into commercial-grade design tools.

Next, we describe the components of our methodology, i.e.,
a MUX-based locking scheme and a physical-synthesis flow for
security- and design-aware locking and layout filling. Note that
both are devised to be working in unison, but also require individual
solutions toward that end.

5.1 TroMUX
Our MUX-based locking scheme, TroMUX, is specifically devised
to hinder post-design Trojan insertion. Given the rise of powerful
ML-based attacks on simple locking schemes, e.g., on X(N)OR key-
gates [3], we opt for MUX-based locking which is considered more
resilient [28]. Still, even MUX-based schemes have been attacked
recently [1, 2]. To render TroMUX resilient against such advanced
ML-based attacks, we devise the following implementation.

Locking Approach. Unlike prior art, TroMUX is not based on
obfuscating the netlist connectivity through MUX key-gates, but
on using MUX key-gates for regular locking. Thus, for TroMUX,
there is no information leakage arising from MUX key-gates for the
connectivity and structure of the design, which is the key vulnera-
bility of prior art [2]. Instead, TroMUX employs simple but resilient
key-gate structures with localized connectivity, described next.

Learning-Resilient Key-Gate Structures. The design of TroMUX
ensures that key-bits are fully randomized, without any correlation
to each of the locked gate’s true functionality. To do so, TroMUX
instances render the locked gates interchangeable with respect to
their complementary counterparts, e.g., a NAND gate can act as
AND or NAND, only depending on the key-bit.

When locking gates using TroMUX instances, one picks ran-
domly from the different possible configurations (Fig. 1). It is es-
sential to note how the different configurations are structurally
indistinguishable; only the key-bits determine the true function-
ality. Also, key-bits are easy to randomize for any particular true
functionality, simply by randomly picking one of the possible con-
figurations. For simple complementary gates, like (a) AND and (b)
NAND, there are four different pairwise configurations which are
indistinguishable on their own. Note how half the configurations
are based on first transforming the original gates to their coun-
terparts; this serves for further obfuscation of the overall layout
regarding the distribution of gate types.

Locking of Complex Gates. Concerning flip-flops (FFs), these can
be locked as is, by connecting the Q and QN ports to a dedicated
key-gate structure (Fig. 1(c)).3 For commercial libraries, where FF
outputs are typically optimized and trimmed, similar key-gate struc-
tures as for simple gates can be initiated (Fig. 1(d)).

3We note that, independently of our work, this key-gate structure was proposed by
Karmakar et al. [16], though in the context of locking scan chains.

(a) AND (b) NAND

0

1

1

0

1

0

0

1

K

(c) Q and QN FF

K

(d) Q or QN FF

Figure 1: Design of different TroMUX instances. The key-bit
is connected to the MUX select line. (a, b) Locking of com-
plementary (N)AND gates; other pairings of simple gates are
locked similarly. (c, d) Locking of flip-flops (FFs) with differ-
ent output configurations.

For other complex gates like AOI, we observe that complemen-
tary counterparts appear rarely in an optimized layout, if they are
available at all in the library. Thus, we defer locking of such complex
gates as follows. When such complex gate is selected for locking,
we search its fan-out in depth-first manner for simple gates and
FFs, covering all the fan-out paths. Then, all the found simple gates
and FFs are locked instead, which essentially translates to locking
the downstream structure of that complex gate.

No Information Leakage from Physical Layout. As indicated, there
are no direct correlations between the types of original versus the
locked gate, the connectivity within and across TroMUX instances,
and the correct key-bit; all are interchangeable, randomly chosen,
and thus indistinguishable for an attacker.

It is also important to note that the two internal TroMUX nets
connecting to the MUX inputs (or driving the MUX fan-out for the
case of Q and QN FFs, Fig. 1(c)) share a path and are, thus, both
optimized/impacted at once by EDA tools. Accordingly, an attacker
seeking to study the underlying timing paths, driver strengths, etc.,
would not gain any additional information.

5.2 Physical Synthesis
With the proposed locking scheme, we introduce a physical-synthesis
flow that is capable of hardening any post-route layout with negli-
gible timing and area overheads. As outlined in Fig. 2, we start with
the original netlist and other necessary data to generate a base-
line layout and then carefully interleave logic locking and physical
synthesis to produce a final protected layout.

5.2.1 Two-Stage Locking Scheme. In the first stage, we lock all
security-critical FFs, as defined by assets. After locking, we conduct
placement and routing (P&R), and obtain a partially protected lay-
out (PPL). A PPL has only FF assets protected; no other parts like
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(1)

(3)

(2)

Input Data Insecure Secure

Netlist
(.v)

Nangate 45nm Library
(.lef / .lib / .db)

Design Settings
(.mmmc / .sdc)

Baseline Layout
(.v / .def )

Security Assets
(Flip-Flops)

Floorplanning & Placement & Routing

Locking Security Assets with TroMUX 

Placement & Routing

Partially Protected Layout
(.v / .def )

Physical Layout-Related

#(Open Sites)

Timing Path Information

Net Toggle Per Clock CycleExtract

Timing and Controllability-Aware Cell Selection 

Locking Selected Cells with TroMUX 

Placement & Routing

Final Protected Layout
(.v / .def ) Private Key

Figure 2: Our physical-synthesis flow, which consists of
three parts: (1) initial synthesis, (2) locking of security as-
sets, and (3) locking considering timing and controllability.

LCNs and LCCs (i.e., the cells driving LCNs; both are targets for
Trojan triggers) are protected yet. Further, a PPL has relatively low
utilization, leaving placement sites exposed to Trojan insertion.

In the second stage, we thus aim at locking as many cells as
possible to fill the layout, also prioritizing the locking of LCCs, all
without degrading the design quality. With the physical layout-
related information obtained from the PPL, we first derive the
number of cells to be locked, then perform cell selection considering
timing and controllability (detailed in Sec. 5.2.4). After locking all
selected cells, P&R is re-run, and we finally retrieve a highly-utilized
layout with all security-critical components well protected through
both TroMUX locking and much fewer placement sites left open.

5.2.2 Storage of Key-Bits. For each TroMUX instance, there will
be one corresponding key-bit, requiring some facility to store all
key-bits. We employ a large shift register for the following reasons:
• Prior art often considers adding a dedicated PI for each key-
bit, which is not scalable. For us, we only require two addi-
tional PIs (data in, load) for any number of key-bits.
• Ours incurs negligible impact on performance and power,4
while the impact on area is even desired (see below).

4For a design locked with 𝑘 key-bits, loading will take 𝑘 clock cycles. This is done
during initial boot-up, when the main circuitry is still hold in reset; runtime cost for
such one-time initialization are considered negligible. Once the load signal signal is
set low, the key-bits will remain stable, consuming only some static FF power.

Table 2: Notations for Cell Selection

Term Description
𝐶 The set of standard cell instances

𝑐 A cell instance from𝐶

𝑁 The set of nets

𝑛 A net from 𝑁

𝑁 (𝑐) The set of nets driven by 𝑐

𝑃 The set of timing paths

𝑃 (𝑛) The set of timing paths covering 𝑛

𝑀𝑆 (𝑛, 𝑃 ) The minimum slack of paths covering 𝑛

𝑇𝑃𝐶 (𝑛) The number of toggles per clock cycle for 𝑛

• The FFs used to build up the shift register are also helpful
for locally filling open placement sites as needed, whereas
bulky memory blocks would rather complicate this task.
• Finally, memory blocks are unavailable for the library used
in this work, i.e.,Nangate 45nm Open Cell Library [20]. We re-
quire this library for the recently introduced ISPD’22 bench-
marks for security closure of physical layouts [18].

5.2.3 On-Demand Key Length. TroMUX instances occupy open
placement sites with their INVs, MUXes, and FFs. After locking
security assets, we determine the additional key length required to
fill the physical layout at hand as follows:

𝑘 = 𝑓 𝑙𝑜𝑜𝑟

(
𝑛𝑢𝑚_𝑜𝑝𝑒𝑛_𝑠𝑖𝑡𝑒𝑠

𝑠𝑖𝑧𝑒 (𝐼𝑁𝑉 ) + 𝑠𝑖𝑧𝑒 (𝑀𝑈𝑋 ) + 𝑠𝑖𝑧𝑒 (𝐹𝐹 ) + 𝛼

)
(1)

where 𝑠𝑖𝑧𝑒 (𝐼𝑁𝑉 ) represents the size of the smallest INV cell in the
library, etc., and 𝛼 is a parameter for timing budget. As commercial
tools will usually conduct timing optimization by gate sizing and
buffer/inverter insertion, we need to reserve some additional space
during locking. Accordingly, for designs where timing closure is
more challenging, we will need a larger 𝛼 , and vice versa.

5.2.4 Cell Selection Considering Timing and Controllability. Recall
that, in the second locking stage, we lock selected cells to reduce
the number of open sites and protect more LCNs/LCCs. As key-
gate structures can introduce further cell delays to related timing
paths, the selection of cells to lock becomes critical for timing
closure. Thus, we propose a scoring function 𝑐𝑒𝑙𝑙𝑆𝑐𝑜𝑟𝑒 (𝑐, 𝑁 , 𝑃) to
comprehensively describe the priority of a cell 𝑐 as follows.

𝑐𝑒𝑙𝑙𝑆𝑐𝑜𝑟𝑒 (𝑐, 𝑁 , 𝑃) =
∑︁

𝑛∈𝑁 (𝑐)
𝑛𝑒𝑡𝑆𝑐𝑜𝑟𝑒 (𝑛, 𝑃), (2)

𝑛𝑒𝑡𝑆𝑐𝑜𝑟𝑒 (𝑛, 𝑃) = 1

1 + 𝑒𝑥𝑝 (−2 ·𝑀𝑆 (𝑛, 𝑃)) ·
1

𝑇𝑃𝐶 (𝑛) + 10−3
,

(3)

𝑀𝑆 (𝑛, 𝑃) =


min
𝑝∈𝑃 (𝑛)

𝑝.𝑠𝑙𝑎𝑐𝑘 , if |𝑃 (𝑛) | > 0,

−0.5 , otherwise,
(4)

with terms described in Table 2. The cell score is represented as
the sum of net scores to generalize to multi-output cases, e.g., both
Q and QN of a FF are used. Further, we devise 𝑛𝑒𝑡𝑆𝑐𝑜𝑟𝑒 (𝑛, 𝑃) to
jointly consider timing and controllability. Using sigmoid, the score
value remains positive even for negative but small slacks. Besides,
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since 𝑇𝑃𝐶 (𝑛) ∈ [0, 2] and nets with 𝑇𝑃𝐶 ≤ 0.1 are considered as
LCNs in this work, we add a small margin (10−3) to avoid both div-
by-0 and𝑇𝑃𝐶 (𝑛) from dominating the score. When calculating MS,
some nets may not be covered by any reported timing paths (due to
limitations of the commercial tool). For those nets,𝑀𝑆 (𝑛, 𝑃) returns
-0.5, a fall-back value close to average negative slacks observed; this
value serves to conservatively penalize cells with unknown timing.

Algorithm1Cell Selection Considering Timing and Controllability
Input: Standard Cells𝐶 , Nets 𝑁 , Timing Paths 𝑃 , Key Length 𝐾 , Locking Delay 𝜎 .
Output: The Set of Cells to Lock𝐶′.
1: 𝐶′ ← {};
2: while |𝐶′ | < 𝐾 do
3: foreach cell 𝑐 ∈ 𝐶 do
4: 𝑐.𝑠𝑐𝑜𝑟𝑒 ← 𝑐𝑒𝑙𝑙𝑆𝑐𝑜𝑟𝑒 (𝑐, 𝑁 , 𝑃 ) ; ⊲ Score calculation for each cell
5: Let 𝑐ℎ be the cell with the highest score in𝐶 ;
6: 𝐶′.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐ℎ) ;
7: 𝐶.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑐ℎ) ;
8: foreach net 𝑛 ∈ 𝑁 (𝑐ℎ) do
9: foreach timing path 𝑝 ∈ 𝑃 (𝑛) do
10: 𝑝.𝑠𝑙𝑎𝑐𝑘 ← 𝑝.𝑠𝑙𝑎𝑐𝑘 − 𝜎 ; ⊲ Pessimistic slack estimation
11: return𝐶′;

Using the above scoring, we propose an iterative cell-selection
algorithm in Algorithm 1. In each iteration, we calculate cell scores
(line 3–4) and pick those cells with the highest score (line 5–7).
Next, we update the slacks of affected timing paths based on 𝜎 ,
a pessimistic estimate of delay introduced by locking, defined as
the sum of worst-case delays for INV_X1 and MUX2_X1 (i.e., the
default TroMUX cells for our experiments), as derived from the
libraries for the matching corner cases (line 8–10).

Our initial experiments show that the proposed two-stage lock-
ing scheme is more timing-friendly over a single-stage approach.
That is, when we did directly use the physical information extracted
from the baseline layouts (marked in red in Fig. 2) for cell selection
and related locking, it was much harder to achieve timing closure,
due to the accumulation of slack estimation errors.

6 EXPERIMENTAL RESULTS
6.1 Setup
6.1.1 Tools. As indicated, we base our work on a commercial-grade
design flow. Without loss of generality, we use Cadence Innovus
20.14 for physical synthesis. The methodology is implemented in
custom TCL scripts and Python code. For security analysis using
SCOPE and MuxLink, setup details are provided in Sec. 6.3.

6.1.2 Benchmarks. Weemploy the benchmark suite from the ISPD’22
contest on security closure [18]. The suite comprises a range of
crypto cores as well as the openMSP430 microcontroller. As Ta-
ble 3 shows, the designs vary in terms of complexity, utilization,
size (cells, nets), available metal layers, timing constraints, and cor-
ners. Since the suite was synthesized by legacy versions of Cadence
Innovus, we resynthesize all designs at our end with floorplan uti-
lization rates similar to the original post-route benchmark layouts;
only the rates for AES_3, openMSP430_2, and TDEA are set 10%
lower, as needed to lock all security assets.

Table 3: Benchmark Statistics

Design F. Utils #(Cells) #(Nets) #(ML) CP Corner
AES_1 75.0% 16509 19694 10 1 typical
AES_2 75.0% 16509 19694 10 1 typical
AES_3 85.0% 15836 19020 10 1 typical
Camellia 50.0% 6710 7160 6 10 slow
CAST 50.0% 12682 13057 6 10 slow
MISTY 50.0% 9517 9904 6 10 slow

openMSP430_1 50.0% 4690 5312 6 30 slow
openMSP430_2 70.0% 5921 6550 6 8 slow

PRESENT 50.0% 868 1046 6 10 slow
SEED 50.0% 12682 13057 6 10 slow
SPARX 50.0% 8146 10884 6 10 slow
TDEA 70.0% 2269 2594 6 4 slow

* F. Utils: floorplanning utilization for resynthesis; #(Cells/Nets): number of
cells/nets in original netlists; #(ML): number of metal layers; CP (ns): clock period;
Corner: typical is characterized for 1.1V and 25C, slow for 0.95V and 125C.

6.2 Results on the ISPD’22 Benchmark Suite
We quantify security and layout results for the resynthesized base-
line layouts versus the final, protected layouts in Table 4.

First, all the protected layouts show much higher utilization
rates, thereby reducing open placement sites by 90.3% on average
and rendering designs much more resilient against Trojan insertion
in general. Meanwhile, we achieve higher track utilization (defined
as total routed wire length / total track length) compared with the
baseline layout such that routing from triggers to payloads will be
more challenging for the attackers. Second, as another layer of pro-
tection, recall that all security assets are locked and that LCNs/LCCs
are well locked in most layouts, except for those with relatively
high initial utilizations. Third, all layouts are without any design
rule check (DRC) violations, despite the ultra-high utilization. This
demonstrates the effectiveness of our proposed flow. Fourth, total
power is increased by 18.5% on average, which seems reasonable
given all the additional cells introduced with TroMUX instances.

In Fig. 3, we show the layouts of the exemplary Camellia design
in three stages as described in Fig. 2. After locking assets, there
are still a number of open sites. However, with the second locking
stage, we manage to increase the utilization to as high as 98.9%.

6.3 ML-Based Attack Analysis
Recall that we use logic locking to both protect security-critical
components in particular and the layout in general. Attackers would
want to undermine our locking and remove TroMUX instances, to
be able to insert Trojans targeted on assets and LCNs/LCCs in
particular (Sec. 4). Thus, we evaluate ours against state-of-the-art
ML-based attacks SCOPE [1] and MuxLink [2].

Setup for SCOPE. The attack expects designs in bench format.
Thus, we resynthesize our locked benchmarks using the bench-
specific, limited set of cells, (i.e., AND, OR, NAND, NOR, INV, BUF,
DFF, XOR, and XNOR) and convert the netlists into bench format
using an in-house Python script. Since the attack cannot handle
loops in the locked designs, we represent FFs as pseudo PIs/POs.
Further, we use the default margin value of 0 [1].

Setup for MuxLink. The original implementation supports only
selected gates (i.e., AND, NAND, OR, NOR, INV, XOR, XNOR, BUF).
Since we use the ISPD’22 benchmarks where all gates from the
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Table 4: Layout and Security Results for Ours on the ISPD’22 Contest Benchmark Suite

Design Baseline Layout (Resynthesized) Protected Layout (Final)
Utils #(Open) TU WNS TNS Power Utils #(Open) Δ(Open) TU WNS TNS Power #(LSA)/#(SA) #(LLCC)/#(LCC) KL

AES_1 75.4% 43,980 8.7% 0.000 0.000 59.957 96.2% 6,838 -84.5% 11.1% -0.013 -0.043 60.552 291/291 884/1,389 1,199
AES_2 75.1% 44,420 8.7% -0.001 -0.003 59.441 96.3% 6,649 -85.0% 10.9% -0.008 -0.017 61.040 291/291 908/1,431 1,202
AES_3 85.7% 22,129 9.7% -0.001 -0.002 59.869 96.6% 5,225 -76.4% 11.2% -0.031 -4.657 62.787 291/291 150/1,310 441
Camellia 49.5% 33,919 9.5% 1.194 0.000 1.233 98.9% 753 -97.8% 13.3% 0.015 0.000 1.488 256/256 724/724 1,271
CAST 49.1% 54,444 9.1% 0.047 0.000 3.136 93.6% 6,879 -87.4% 12.7% -0.134 -1.455 3.912 192/192 983/994 1,572
MISTY 48.5% 43,359 8.6% -0.021 -0.037 2.238 94.4% 4,686 -89.2% 12.4% -0.140 -1.515 2.966 204/204 307/312 1,215

openMSP430_1 49.7% 32,799 6.2% 0.000 0.000 0.375 97.9% 1,389 -95.8% 12.6% 0.000 0.000 0.544 340/340 441/456 1,218
openMSP430_2 70.5% 15,125 7.7% 0.000 0.000 1.239 97.1% 1,497 -90.1% 10.6% -0.006 -0.015 1.369 334/334 209/696 543

PRESENT 49.8% 6,284 4.4% 6.694 0.000 0.198 98.0% 245 -96.1% 6.8% 4.935 0.000 0.235 80/80 3/3 241
SEED 49.1% 54,444 9.1% 0.047 0.000 3.136 94.3% 6,056 -88.9% 12.7% -0.182 -1.072 3.908 195/195 979/989 1,612
SPARX 49.9% 69,979 6.3% 2.452 0.000 2.164 98.8% 1,658 -97.6% 14.0% 0.027 0.000 2.822 2,176/2,176 361/375 2,582
TDEA 70.4% 5,559 6.8% 0.049 0.000 1.084 98.4% 304 -94.5% 8.0% 0.027 0.000 1.153 168/168 6/47 214

* Utils: utilization after physical synthesis; #(Open): number of open sites; TU: track utilization; WNS (ns): worst negative slack; TNS (ns): total negative slack; Power (mW):
total power; Δ(Open): reduction of number of open sites; SA: security assets; LSA: locked security assets; LCC: low-controllable cells; LLCC: locked low-controllable cells; KL:
key length (bits).

Figure 3: Camellia layout, after initial synthesis (left), locking of security assets (middle), and locking considering timing and
controllability (right). The utilization increases from 49.5% to 59.2%, and eventually to 98.9%. Gates introduced by TroMUX
instances are marked in blue while the other standard cells are filled with grey dots.

Nangate library are used, we extend the one-hot feature vectors
of MuxLink accordingly. Consistent with the original operation of
MuxLink, we treat each pin of each gate as a node and the con-
nections between pins, including those going through gates, as
edges. The connections between the input/output pins of TroMUX
key-gates are kept as test set for prediction, while all others (except
PI or PO connections) are used as training set. We adopt the same
graph neural network configuration and training hyperparameters
as in [2]; in particular, number of hops for extracting subgraphs is
set to 3 and the threshold in post-processing is set to 0.01.

Evaluation Metrics. We report the performance of the SCOPE
and MuxLink attacks using the following established metrics: ac-
curacy (AC), precision (PC), key prediction accuracy (KPA), and
COnstant Propagation Effect (COPE, [1]); all metrics are in per-
centage. AC measures the percentage of correctly deciphered key-
bits, i.e., (𝑘𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑘𝑡𝑜𝑡𝑎𝑙 ). PC measures the correctly deciphered
key-bits, optimistically considering every 𝑋 /undeciphered value
as a correct guess, i.e., ((𝑘𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑘𝑋 )/𝑘𝑡𝑜𝑡𝑎𝑙 ). KPA measures the
correctly deciphered key-bits over the entire prediction set, i.e.,

(𝑘𝑐𝑜𝑟𝑟𝑒𝑐𝑡/(𝑘𝑡𝑜𝑡𝑎𝑙 − 𝑘𝑋 )). COPE measures the vulnerability against
the SCOPE attack; COPE = 0% means the attack fails entirely.

Results for SCOPE. The results in Table 5 show that 19.35%/19.25%
of the key bits are correctly recovered on average. The average
value of 0.065% for COPE means that the attack fails almost en-
tirely. Further, the average KPA of 53.72% versus 46.28% for the two
keys5 indicates that SCOPE is forced to random guessing for ours.
Note that the attack can only decipher a single bit for TDEA, thus
resulting in KPA of 100% and 0% for that design.

Results for MuxLink. The results in Table 5 show that MuxLink
can only predict, on average, 20.90% of the key-bits. Moreover, the
average KPA is 53.21%, clearly indicating that MuxLink is forced to
random guessing. In contrast to prior art like D-MUX [2, 28]—also
showcased in Table 5—ours is superior in thwarting the attack.

5SCOPE predicts the two mutually complementary keys, representing the possible
configurations of ‘0’ and ‘1’ versus ‘1’ and ‘0’ for key-bits.
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Table 5: ML-Based Attack Results on Different Locking Schemes

Design KL
SCOPE [1] MuxLink [2]

COPE (%) TroMUX Key 1 TroMUX Key 2 #(X) TroMUX D-MUX [2, 28]
AC (%) KPA (%) AC (%) KPA (%) AC (%) PC (%) KPA (%) #(X) AC (%) PC (%) KPA (%) #(X)

AES_1 1,199 0.1919 28.86 48.39 30.78 51.61 484 28.77 71.48 50.22 512 78.15 79.90 79.54 21
AES_2 1,202 0.1864 31.53 52.71 28.29 47.29 483 28.12 75.04 52.98 564 80.45 81.70 81.47 15
AES_3 441 0.1075 23.36 48.13 25.17 51.87 227 8.16 90.02 45.00 361 88.44 89.12 89.04 3
Camellia 1,271 0.0240 14.16 51.72 13.22 48.28 923 26.12 73.80 49.92 606 90.64 92.60 92.46 25
CAST 1,572 0.0359 18.58 50.52 18.19 49.48 994 37.47 66.03 52.45 449 93.74 94.32 94.29 7
MISTY 1,215 0.1036 23.70 48.90 24.77 51.10 626 33.33 65.84 49.39 395 97.84 98.03 98.02 3

openMSP430_1 1,218 0.0432 19.87 49.90 19.95 50.10 733 23.56 76.60 50.17 646 NA NA NA NA
openMSP430_2 543 0.0306 29.28 52.13 26.89 47.87 238 9.39 90.42 49.51 440 66.85 69.98 69.01 17

PRESENT 241 0.0434 2.49 42.86 3.32 57.14 227 11.62 95.02 70.00 201 NA NA NA NA
SEED 1,612 0.0343 18.55 49.10 19.23 50.90 1,003 37.03 64.02 50.72 435 97.33 97.70 97.70 6
SPARX 2,582 0.0176 21.42 50.23 21.22 49.77 1,481 5.38 94.93 51.48 2,312 NA NA NA NA
TDEA 214 0.0001 0.47 100.00 0.00 0.00 213 1.87 99.07 66.67 208 NA NA NA NA
Avg. - 0.0682 19.35 53.72 19.25 46.28 - 20.90 80.19 53.21 - 86.68 87.92 87.69 -

* AC: accuracy; PC: precision; KPA: key prediction accuracy; COPE: COnstant Prop. Effect; #(X): number of undeciphered key-bits; NA: Locking using the script in [2] fails.

6.4 Discussion of Prior Art
Recall the review of related prior art in Sec. 3.1 and the overview
in Table 1. Note that none of the prior art released their results
artifacts publicly. Further, most of the prior art uses different tech-
nology libraries and implementation schemes, as well as different
benchmarks. Thus, a direct comparison is impractical.

Still, it is essential to recall the considerable limitations of those
studies and to forecast related implications. For example, for X(N)OR
key-gates utilized by Samimi et al. [22] and Marcelli et al. [19], we
note that Alrahis et al. [3] have independently shown that such
locking can be circumvented with up to 97.22% accuracy. Thus, we
argue that locking as applied by Samimi et al. [22] and Marcelli et
al. [19] can be easily circumvented, unlike ours (Sec. 6.3).

7 CONCLUSION
We propose a MUX-based locking scheme, called TroMUX, along
with a carefully tuned physical-synthesis flow, for preventing tar-
geted Trojan insertion. To the best of our knowledge, ours is the first
to systematically employ locking and layout-level means in unison
for Trojan prevention. Results on the ISPD’22 contest benchmarks
show that ours can reduce the number of open placement sites by
90.3% on average, with security-critical components secured by
logic locking. Further, we demonstrate the superior resilience of
ours against ML-based attacks: on average, SCOPE and MuxLink
can only correctly predict 19.35%/19.25% and 20.90% of the key-bits,
respectively, with around 50% key-prediction accuracy for both,
indicating our scheme is enforcing random guessing.
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